
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E J D J . S Y S - C O N . C O M

LOOKING BACK, LOOKING AHEAD PAGE 62

PLUS...

Reporting

Made Easy
Proxy
Cache

Introduction
to Acegi

RETAILERS PLEASE DISPLAY
UNTIL MARCH 31, 2006

IN THIS ISSUE...
JAAS in the Enterprise
PAGE 20

Experiences with the New 1.5
Java Language Features
PAGE 32

The Flexible Model
PAGE 52

 JDJ.SYS-CON.COM VOL.11 ISSUE:1

No. 1 i-Technology Magazine in the World

 JDJ.SYS-CON.COM VOL.11 ISSUE:1

JSF and

INTRODUCING A NEW OPEN SOURCE PROJECT

Struts Validations Framework

Using AJAX

OPEN

Coming...

March 13, 2006
New York City
www.ajaxseminar.com

Marriott Marquis
Times Square, NYC

New York City
www.ajaxseminar.com

SEE PAGE 49

FOR DETAILS

3January 2006JDJ.SYS-CON.com

his is traditionally the time of year
for SYS-CON Media’s roundup of
i-Technology predictions from
around the Web and the year’s har-

vest of thoughts and viewpoints. Accord-
ing to our worldwide network of software
development activists, evangelists, and
executives, 2006 promises to be a vintage
year for software development…
 Take Microsoft, for example: A new
client OS is on the way, Microsoft Vista,
due late in 2006, giving rise to the obvi-
ous question: Will the new cool 3D user
interface be enough to move the user
to upgrade? We’ll see. Maybe the new
built-in security, performance features,
and integrated search will be enough to
convince users – after all, why go to the
Web if built-in Web-enabled services and
integrated information search allow the
Web to come to you?
 Or consider the world of PDA devices.
Everyone is looking for the next killer
Palm or BlackBerry. But are they looking
in the right direction for the next killer
PDA? What about unexpected places – for
example, Nintendo? Check out the new
Nintendo DS: Could you imagine it run-
ning Pocket PC or Palm OS? That would
make a very cool gadget. What about the
iPod? Have you seen the new iTunes-en-
abled Cingular Phone? It could be closer
than you think.
 On the pages that follow you’ll find the
collected wisdom of some of the most
acute prognosticators in the industry. As
always with JDJ and SYS-CON Media, we
don’t ask pundits and sideline commen-
tators but activists, folks whose connec-
tion with software development and/or
the software industry is daily, intense,
and driven by real-world concerns of ROI
and the business case for innovation, not
just innovation for innovation’s sake.
 As ever, please don’t hesitate send us
your own thoughts. “None of us is as
smart as all of us,” they say, a philoso-
phy that has even spawned a book (The
Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collec-
tive Wisdom Shapes Business, Economies,
Societies and Nations by James Surow-
iecki,). We will publish a roundup of

readers’ predictions in the February issue
of Java Developer’s Journal.
 Let’s begin this year’s roundup with
the predictions for 2006 of Mitchell
Kertzman, now at Hummer Winblad
Venture Partners but still famous for
having been the founder and CEO of
Powersoft, which merged with Sybase in
February 1995. When someone with over
30 years of experience as a CEO of public
and private software companies tips
LAMP, for example, it lends a certain cre-
dence to an already strong trend that we
have sought to cover in SYS-CON Media’s
various publications such as LinuxWorld
Magazine and over at OpenSourceEnter-
prise.com.

MITCHELL KERTZMAN
AJAX, LAMP, Virtualization,
SaaS, Open Source

 Since I’m in venture capital now, I try
to put my (and others’) money where my
mouth is, so my predictions will tend to
match up with my portfolio.
 In no particular order:
1. Rich application interfaces, including

(but not exclusively) AJAX. Enterprise
developers/IT managers have finally
realized that the browser interface was
a step backward to the 3270 and forms
mode. That was good enough for a
while, but not anymore.

2. LAMP in the enterprise. If you follow
my portfolio company, ActiveGrid,
you’ll find one of the leaders of the
J2EE app server market now offering a
far easier-to-build and less-expensive-
to-deploy platform.

3. Virtualization. With three strong
virtualization platforms (VMWare,
Microsoft Virtual Server, and
XenSource) now available, there will
be more and more software products
built not on traditional hardware/
software platforms but on virtualized
platforms. Check out Akimbi Sys-
tems, which provides a very exciting
application for QA and testing in the
enterprise.

–continued on page 60

From the Group Publisher

The Shape of
i -Technology to Come

 Editorial Board
 Java EE Editor: Yakov Fain
 Desktop Java Editor: Joe Winchester
 Eclipse Editor: Bill Dudney
 Enterprise Editor: Ajit Sagar
 Java ME Editor: Michael Yuan
 Back Page Editor: Jason Bell
 Contributing Editor: Calvin Austin
 Contributing Editor: Rick Hightower
 Contributing Editor: Tilak Mitra
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Lima
 Executive Editor: Nancy Valentine
 Associate Editor: Seta Papazian
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Man-ping Grace Chau, Yakov Fain, John Fallows,

Jess Garms, Jeremy Geelan, Tim Hanson, David Hardwick,
Sonny Hastomo, Jonas Jacobi, Ganesh Kirti,

Onno Kluyt, Justin Knowlden, Raymond K. Ng,
Peter Sellars, Joe Winchester

To submit a proposal for an article, go to
http://jdj.sys-con.com/main/proposal.htm

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department:

888 303-5282
201 802-3012

 subscribe@sys-con.com

Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2006 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Megan Mussa, megan@sys-con.com. SYS-CON Media
and SYS-CON Publications, Inc., reserve the right to revise, republish
and authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON

at conferences and

trade shows, speaking

to technology

audiences both in

North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

T

5January 2006JDJ.SYS-CON.com

JANUARY 2006 VOLUME:11 ISSUE:1

contents
JDJ Cover Story

46

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offi ces. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

The Shape of i-Technology
to Come
by Jeremy Geelan.................................3

ENTERPRISE VIEWPOINT

Java Champions
by Yakov Fain.................................6

REPORTS

Reporting Made Easy
JasperReports and Hibernate in Web applications
by Peter Sellars.................................10

CACHING

Proxy Cache
A practical implementation
by Justin Knowlden.................................40

DESKTOP JAVA VIEWPOINT

When Fixing Problems,
Look Beyond Merely Improving
the Existing Solutions
by Joe Winchester.................................50

JSR WATCH

Looking Back, Looking Ahead
by Onno Kluyt.................................62

TUTORIAL

Struts Validations Framework
Using AJAX
Enriching the existing framework
by Sonny Hastomo.................................14

ENTERPRISE

JAAS in the Enterprise
An integration proposal
by Raymond K. Ng and Ganesh Kirti.................................20

FIRST LOOK

Introduction to Acegi
Mastering the security framework
by David Hardwick.................................26

Experiences with the New 1.5
Java Language Features

 Jess Garms and Tim Hanson

32

The Flexible Model
by Man-ping Grace Chau

52

by Jonas Jacobi
and John Fallows

AJAX
Introducing a new open source project

JSF AND

JDJ.SYS-CON.com6 January 2006

ecently I got an e-mail with
the following header: “Your
nomination to Sun Java
Champions.”

 My Java-intoxicated brain im-
mediately started several parallel
threads. Since I now use the Call-
able interface instead of Runna-
ble, my threads can return results
and throw exceptions.
 The first thread threw a
SpamException.
 The second thread returned
a String “but there is no
attachments.”
 The third one gave me “The
sender’s address ends with sun.
com.”
 But I liked the last thread the
most: “Just open the e-mail, will
you!”
 I did, and this is how the e-mail
started: “I am contacting to let
you know that you have been
nominated to the Sun Java Cham-
pions Program through the
Java Champions homepage
https://java-champions.
dev.java.net/.
 The Java
Champions
program is
sponsored by
Sun Micro-
systems and
is an effort to
recognize leaders
in the Java Com-
munity and invite
them to par-
ticipate in the
development

of the Java platform in collabora-
tion with Sun engineers and Java
Luminaries.”
 No kidding! I accepted this
nomination immediately. Then
several members of Java Champi-
ons Selection committee ap-
proved my nomination too, and
here I am a Java Champion!
 I’m really proud to be listed on
the same Web page with James
Gosling, Doug Lea, Bill Venners,
Gavin King, and other great Java
world leaders. This program
seems to be similar to Microsoft’s
Most Valuable Professional (MVP)
deal, but let me find out from the
source. Matt Thompson, direc-
tor of Sun Developer Network &
Open Source Programs Office has
agreed to answer my questions.

Q: When was the Sun Java Cham-
pions program introduced?

A: It was introduced in
June 2005 at the JavaOne

conference in
San
Francisco.

Q: How do you
decide who will

get the T-shirt
with the logo

“Sun Java
Champion”?

– continued on
page 8

Enterprise Viewpoint

Yakov Fain
Enterprise Editor

Java
Champions

R

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com

Vice President, Sales and Marketing:
 Miles Silverman miles@sys-con.com

Advertising Sales Director:
 Robyn Forma robyn@sys-con.com

National Sales and Marketing Manager:
 Dennis Leavey dennis@sys-con.com

Advertising Sales Manager:
 Megan Mussa megan@sys-con.com

Associate Sales Manager:
Kerry Mealia kerry@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com

Associate Editor:
 Seta Papazian seta@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com

Lead Designer:
 Tami Lima tami@sys-con.com

Art Director:
 Alex Botero alex@sys-con.com

Associate Art Directors:
 Abraham Addo abraham@sys-con.com
 Louis F. Cuffari louis@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Video Production:
 Frank Moricco frank@sys-con.com

Web Services
Information Systems Consultant:

 Robert Diamond robert@sys-con.com

Web Designer:
 Stephen Kilmurray stephen@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com

Accounts Payable:
 Betty White betty@sys-con.com

Accounts Receivable:
 Gail Naples gailn@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com

National Sales Manager:
 Jim Hanchrow jimh@sys-con.com

Customer Relations
Circulation Service Coordinator:

 Edna Earle Russell edna@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

Yakov Fain is a senior technical

architect at BusinessEdge

Solutions, a large consulting and

integration firm. He authored

the best selling book “The Java

Tutorial for the Real World,” an

e-book “Java Programming for

Kids, Parents and Grandparents,”

(smartdataprocessing.com)

and several chapters for “Java 2

Enterprise Edition 1.4 Bible.” He

leads Princeton Java Users Group.

yakovfain@sys-con.com

The Java Champions program is sponsored
by Sun Microsystems and is an effort to

recognize leaders in the Java Community”
“

���

��
��� �����������������
���
��

���
��
���
���������������������������� ��
���
���
����������������������������

�������������������������
��������������������������

�������������������������������������� ��

����������������������������

��
��

��

JDJ.SYS-CON.com8 January 2006

– continued from page 6

A: When we started the pro-
cess, we looked around with-
in the Java Community for
leaders in the various parts
of the Java eco-system (like
JUG leaders, authors, trainers,
professors, researchers, etc.).
From this has grown a
“community nomination”
process that’s both unique
and a real strength. The
community itself nomin-
ates most nominees and it
selects new Java Champi-
ons through a peer review
process. The criteria used are
listed in the Java Champions
homepage.

Q: How many Java Champions
are there?

A: Currently there are about
70 Java Champions around
the world, with another 40-
50 in the selection process
queue. Once we get up to 100
or so we’re going to evaluate
how many more are appropri-
ate. The idea was always to
make sure we built a commu-
nity of Java Champions that
reflects the top echelon of
contributors to the Java
Community.

Q: What feedback/contribu-
tions do you expect from the
Champions?

A: I think what’s interesting
isn’t what we expected, but
rather what has happened.
We’ve already engaged the
Champions in a number of

discussions about the state
of Java training, the use of
the Java brand, the state of
Sun’s Java tools, and several
others. The overall discussion
has been incredibly valuable
and the feedback has been
very well received within Sun.
 As we go forward, we’ll
continue to share ideas and
concepts with the Champions
and use them as a sound-
ing board for the larger Java
community. The various
discussions around the state
of the Java platform are also
an excellent resource for Sun
to “take the pulse” of the Java
eco-system. We’re very fortu-
nate to have a great group of

Champions who are willing to
share their views of how we
can work together to continue
to grow the adoption of the
Java platform honestly and
openly.

Q: I’ve already gotten a gift
box of T-shirts, computer
widgets, and a book.
What other perks are you
planning to offer to the
|Champions?

A: There are a number of ben-
efits besides the “goodies” that
the Champions have already
received. One is the opportu-
nity to meet directly with Sun
leadership to discuss issues
and opportunities around the
Java platform. One of these
meetings just took place at Ja-
vaPolis in Antwerp, where Jeff
Jackson, senior vice-president
of the Java platform, tools, and

Sun’s developer program (the
Sun Developer Network), sat
down with several Champi-
ons to discuss the state of the
platform.
 In the future we’ll look
at different ways to work
directly with individual
Champions to potentially
highlight their work (either
through speaking opportuni-
ties at Sun’s developer events
like JavaOne or the Sun Tech
Days or online through Sun’s
developer portal: developers.
sun.com).

Q: Now on the lighter note do
you think a Java Champion

can be called “The Brother or
Sister of Java” or at least “The
Cousin of Java”?

A: I look at these folks as the
heroes of the Java platform
– so brother/sister/cousin
doesn’t imply enough value
(at least to me). These folks
are truly both a wealth of
knowledge for us to tap into,
as well as a great resource
to work with in making the
Java platform easier to adopt
worldwide.

Yakov. Thank you, Matt!

I’m very down-to-earth and
realize that even though I’m
a Champion, you can find
plenty of people who know
Java better than me. But you
won’t find too many people
who enjoy living in this great
Universe called Java Commu-
nity more than I do.

Enterprise Viewpoint

The various discussions around the state of the Java platform
are also an excellent resource for Sun to “take the pulse”

of the Java ecosystem”
“

The various discussions around the state of the Java platform
are also an excellent resource for Sun to “take the pulse”

of the Java ecosystem”
“

��
��������������������������������

��
���

����������������������������������
����������������������������������

��

���
���
��
��
��
��
�
�������������������
���
���
���
���

JDJ.SYS-CON.com10 January 2006

asperReports is a valuable and
viable reporting solution for Java
Web applications. It simplifies
report generation through the use of
XML report templates that are then

compiled using the JasperReports engine
for use in reporting modules. These
compiled report templates can be filled
by data received from a variety of sources
including relational databases. Jasper-
Reports can be integrated into Web
applications and create reports in several
file formats including PDF and XLS.

Reporting in Java Applications
 Often reporting modules increase in
complexity and size during the course of
application development. Clients tend
to demand more information from re-
port modules when they become aware
of the benefits reports offer. The report-
ing module developed as something of
an afterthought in such environments
suddenly becomes a much more inte-
gral part of the application. Reporting
modules often seem to be tacked on to
developed applications, rather than be-
ing considered and implemented during
initial application development.
 Recently while working on some
applications that made extensive use of
report extraction to XLS files using the
Apache POI library, it became appar-
ent that these report modules tied up
lots of valuable development resources
for extended periods of time. When the
client requested PDF extraction, initial
iText API research led me to discover Jas-
perReports. JasperReports was to change
our team approach to report develop-
ment dramatically.
 Prior to implementing JasperReports
each report creation required the devel-
opment of a custom report class using
the Apache POI library. This approach
expended valuable development time
creating aspects of the report such as cell
specific formats, styles, and population
methods. JasperReports offered our
team the ability to get back this valuable

development time, while producing the
same report because of its embedded
use of the Apache POI library.
 One of the benefits offered by the
introduction of JasperReports is that a
single report template implementation
can produce reports in a number of for-
mats. This means that templates created
for XLS format extraction can also be
used to produce PDF files and even CSV,
HTML or XML.

How Can JasperReports Help
Developers?
 JasperReports gives developers the
ability to create reports quickly and
easily that can be extracted to numer-
ous formats. Developers can also use
the JasperReports engine to compile
report templates at design or runtime
– allowing dynamic report formats.
Developers can also inject data into
these reports from a number of data
sources. Developer time no longer has to
be spent creating custom report classes
using the Apache POI or iText libraries
for formatting and stylizing reports,
allowing the code writers to focus on the
data retrieval aspect of the report. As a
result developers gain valuable flexibility
and time savings using JasperReports in
application development.

 The XML report templates used by
JasperReports provide the layout and
presentation information required to
format the resulting report as well as
field, variable, and parameter refer-
ences. Non-development staff can create
these templates using a third-party GUI
such as iReport with minimal developer
collaboration, so developers don’t have
to involve themselves in the layout and
presentation aspect of report generation.
 JasperReports enables developers to
concentrate their efforts on the parts
of the reporting module where they are
required, while relieving them of having
to write custom report generation code.
A developer’s role in the report module
can be reduced to template compila-
tion, data source implementation, and
actual report creation.

Creating and Compiling an XML Report
Template
 JasperReports requires a report design
defining the layout, presentation, and
data fields. This design can be built us-
ing the net.sf.jasperreports.engine.design.
JasperDesign object, so developers can
create report designs dynamically, or
by creating a net.sf.jasperreports.engine.
design.JasperDesign instance from an
XML report template. Unless an ap-
plication specifically requires a dynamic
layout a compiled XML report template
is the recommended method. This XML
template is usually saved with a .jrxml
file extension and compiled using the
net.sf.jasperreports.engine.JasperCom-
pileManager.
 The JasperReports XML template
includes elements for <title>, <page-
Header>, <columnHeader>, <page-
Footer>, <columnFooter>, and the main
data <detail> element. Each of these
elements has a variety of sub-elements
as can be seen in sampleReport.jrxml
(see Listing 1).
 You can download the code samples
used in this article at jdj.sys-con.com.
As can be seen in sampleReport.jrxml

Reports

by Peter Sellars

Reporting Made Easy

J

Peter Sellars is a Java

developer who develops

Web applications.

peter@netbyte.com

JasperReports and Hibernate in Web applications

11January 2006JDJ.SYS-CON.com

some elements such as <band> and <re-
portElement> contain layout information,
while others such as <textElement> and
 contain presentation information.
The XML templates also contain <param-
eter>, <field>, and <variable> elements
used to include data in the report.
 The <parameter> elements allow non-
data source information to be passed into
a report, such as a dynamic title; <field>
elements are the only way to map report
fields to the data source fields, while vari-
ables are values generated at runtime for
use in the report. The complete Document
Type Definition (DTD) for the JasperRe-
ports XML report template can be found in
the JasperReports Ultimate Guide.
 Compilation of the XML template can
be done either at runtime or build time as
part of an Ant build using the JasperRe-
ports Ant task.
 Compiling the report at runtime entails
loading the report into a JasperDesign
object and using the created instance as
the parameter to the JasperCompileMan-
ager.compileReport(JasperDesign design)
method, which returns a JasperReport
instance. Alternatively the XML template
can be passed into the JasperCompile-
Manager.compileToFileReport(String
sourceFileName, which creates a compiled
report file (.jasper) available throughout
the application.
 Compiling the report at build time
using the JasperReports Ant task requires
the addition of the task definition to the
build.xml file and a target making use of
this task as seen in Listing 2, which is an
extract from the source code build.xml.
Using the Ant task results in the creation
of a compiled (.jasper) file in the destdir
task and offers the opportunity to save the
Java source file by passing the keepjava
attribute of the target a true value. A more
thorough example of how to use the Ant
task is included in the sample applications
provided in the JasperReports download
bundle.

Using Data Sources to Fill JasperReports
 Most reports use a database as the data
source, but JasperReports can use any
available data source. These data sources
are passed to a net.sf.jasperreports.engine.
JasperFillManager fillReportXXX() meth-
od. Two types of data source are provided
for by these methods – net.sf.jasperreports.
engine.JRDataSource and java.sql.Connec-
tion. The source code for this article con-
tains examples of both a static data source

that extends the JRDataSource and a JDBC
connection data source implementation.
 The StaticDataSource class imple-
mentation provided implements the net.
sf.jasperreports.engine.JRDataSource
interface enabling it to fill the report
data by calling the JasperFillManager.
fillReport(JaperReport report, Map
parameters, JRDataSource dataSource)
method. The two required methods
getFieldValue(JRField jrField) and next()
of the JRDataSource interface present in
StaticDataSource handle the data passing
from the data source into the JasperRe-
port. The data source used by StaticDa-
taSource is a static simple two-dimen-
sional array of bowlers containing their
names and scores over three games (see
Listing 3). When the fillReport() method
containing this data source is processed
and a detail section is encountered in the
report a call will be made to the next()
method. The implementation of this
method in StaticDataSource (see Listing
4) returns true if there’s another element
in the data array, or false if there is no
more data. If this method returns true
then field elements encountered in the
detail section will result in a call to the
getFieldValue(JRField jrField) method in
StaticDataSource. The implementation
of this method in StaticDataSource (see
Listing 5) returns the value of the mapped
data field name for the current index of
the data array. When the end of the detail
section is encountered, the next() method
is called again and the process repeats
until the next() method returns false.
 The JDBCDataSourceExample (see
Listing 6) implements a fillReport()
method that accepts a java.sql.Connec-
tion parameter. Through the addition of a
<queryString> element into the XML re-
port template (jdbcSampleReport.jrxml)
this fillReport() method enables data to
be extracted from a relational database.
The <queryString> element returns the
data fields for use in the report data
mapping. In this case the query simply
returns all records in the sample_data
table. A java.sql.ResultSet can be used in-
stead of implementing the <queryString>
element in the report template, allowing
dynamic query implementation.

Using Hibernate with JasperReports
 Hibernate is one of the most popular
ORM tools in use at the moment. Using
Hibernate as a data source for Jasper-
Reports can be very simple when a

collection of objects is returned from
a Hibernate query, but when a tuple of
objects is returned then a custom JRDa-
taSource implementation is required.
 When a Hibernate query returns a
collection of objects, a net.sf.jasperreports.
engine.data.JRBeanCollectionDataSource
can be used to map the Hibernate POJO
instance fields to the report fields. All
that’s required for this simple solution
is to use the JRBeanCollectionDataSou
rce(java.util.Collection beanCollection)
constructor, passing it the Hibernate
Query result set as implemented in
SimpleHibernateExample (see Listing
7). In this example the simple Hibernate
query used (session.createQuery(“from
SampleData”).list()) is equivalent to that
found in the JDBCDataSourceExample.
JRBeanCollectionDataSource implements
JRDataSource like StaticDataSource but
its getFieldValue(JRField jrField) method
implementation maps the report tem-
plate field names to the query result bean
properties.
 When a Hibernate query returns a
tuple of objects it’s necessary to write a
custom implementation of the JRData-
Source similar to HibernateDataSource
(see Listing 8). The implementation
of the required next() method in this
class returns true if there is another
list item in the Hibernate query result
set, while putting the current list item
in a currentValue holder for use in the
getFieldValue(JRField jrField) method.
The getFieldValue() method imple-
mentation gets the field index in the
currentValue object via a call to the
getFieldIndex(String field) method. This
method iterates through the mapped
field names passed to the HibernateDa-
taSource constructor until it finds the
field name it was passed and then returns
the index of this field in the currentValue
information. The getFieldValue() method
then returns the value at this index in the
currentValue result object.
 More extensive solutions to using
Hibernate with JasperReports, including
the use of reflection instead of the name
mapping method used in HibernateDa-
taSource, can be found on the Hibernate
Web site http://www.hibernate.org/79.
html. Also of interest in this area is the
report optimization implementation
advocated by John Ferguson Smart in his
article “Hibernate Querying 103: Using
Hibernate Queries with JasperReports”
(see Resources).

JDJ.SYS-CON.com12 January 2006

Exporting Reports to PDF and
XLS Formats in Web Applications
 After compiling and filling a Jasper-
Report report exporting it is a fairly
simple and straightforward process
using the net.sf.jasperreports.engine.
JRExporter interface implementations
provided. JasperReports can export
data to PDF, XLS, CSV, RTF, HTML, and
XML from the same report design using
the appropriate implementation of the
JRExporter interface. The PDF and XLS
formats are two of the most common
export formats and examples of export-
ing to these formats from within a Web
application can be found in the source
code for this article. PrintServlet exports
to PDF, while DataExtractServlet exports
the same data to an XLS format file.
 PrintServlet (see Listing 9) is a an
example servlet implementation class
using JasperReports to export a report
to PDF format. JasperReports makes use
of the Open Source iText PDF creation

library (see Resources) to generate PDF
format files. Once the report is compiled
in PrintServlet, the PDF is created and
streamed to the Web browser ready
for printing using the runReportToP
dfStream(InputStream inputStream,
OutputStream outputStream, Param-
eters params, Connection connection)
method implemented by the JasperRun-
Manager facade class.
 DataExtractServlet (see Listing 10)
is an example servlet implementation
class using JasperReports to export a
report to the XLS format. JasperReports
makes use of the Apache POI library
(see Resources) to generate XLS format
files. Once the report is compiled in
DataExtractServlet the XLS file is cre-
ated in memory and a save dialog is
displayed to the user. The servlet uses
net.sf.jasperReports.engine.export.
JRXlsExporter, one of the concrete
implementations of the JRExporter
interface provided by JasperReports
to export the report. The parameters
for exporting the report are initialized
using JRXlsExporterParameter variables
to set the filled report (JRXlsExport-

erParameter.JASPER_PRINT) and the
output stream (JRXlsExporterParam-
eter.OUTPUT_STREAM) – which is the
response object that has had its con-
tent type and header set so that the file
will be made available to the user for
saving rather than displayed as in the
PrintServlet example when exportRe-
port() is called.
 Useful Hint: By default JasperReport
puts page headings at the top of every
‘page’ of data. When exporting to an XLS
format this breaks up the continuous
data in a worksheet that contains more
than a single ‘page’ of data. Data conti-
nuity can be maintained by passing the
type of output format as a parameter
to a report template combined with a
<printExpression> element based on
the passed parameter placed in the
<pageHeader> element. The <printEx-
pression> below will result in only the
page headings being output to a ‘page’
if the report is processing the first page

when the output format isn’t PDF and
on every ‘page’ for PDF output formats.

<printWhenExpression>

 <![CDATA[$V{PAGE_NUMBER}.intValue() == 1

 || $P{REPORT_TYPE}.equals(“PDF”)

 ? Boolean.TRUE : Boolean.FALSE]]>

</printWhenExpression>

Creating Reports Is Easy and Fun
with JasperReports
 Hopefully this article has whetted
your appetite for exploring the world of
report generation using JasperReports,
or if you’ve already discovered Jasper-
Reports, that it’s provided some ideas
on how to delve into creating custom
data sources or using new export
formats. Understanding and master-
ing the implementation of the required
JRDataSource methods next() and
getFieldValue(JRField jrField) opens up
any data source for use in generating
reports with JasperReports.
 Creating reports with JasperReports
is made even simpler by some useful
tools. iReport (see Resources), an excel-
lent JasperReports template creation

tool that allows visual report designs
in a GUI application can be used by
non-developers to create the Jasper-
Report designs. It also offers substantial
developer-focused functionality such as
data source connectivity to create report
previews outside of an application.
JasperAssistant (see Resources), while
not Open Source has the advantage of
being an Eclipse plug-in for develop-
ing JasperReport templates in a similar
GUI manner, albeit more developer-
oriented. Both offer the benefit of being
able to prepare a report design, which
can then be provided to a developer for
filling, relieving him of the tedious pre-
sentation aspect of report generation.
 This article has barely scratched the
surface of JasperReports’ extensive use
and functionality but hopefully it’s intro-
duced some developers to an extremely
useful tool in any Java developer’s
arsenal. JasperReports can even produce
charts and graphs, as well as including

images in reports that increase the rich-
ness and presentation of an applications
reporting system. JasperReports is a
powerful API that can take a reporting
system to the next level.

Resources
• JasperReports Ultimate Guide

(Version 2.0), Teodor Danciu,
JasperSoft Corporation.

• JasperReports Web site - http://jas-
perreports.sourceforge.net

• iReport Website - http://ireport.
sourceforge.net

• JasperAssistant Web site - http://
www.jasperassistant.com

• Hibernate Web site - http://www.
hibernate.org

• Using JasperReports with Hibernate
- http://www.hibernate.org/79.html

• Hibernate Querying 103: Building
Reports with JasperReports -
http://www.javalobby.org/articles/
hibernatequery103/?source=archives

• iText Website - http://www.lowagie.
com/iText/

• Apache Jakarta POI Web site - http://
jakarta.apache.org/poi/

Reports

JasperReports dramatically changed our team approach
to report development”“

Is your organization’s content protected…

…and still easy to access and share?

Over two million users depend on Xythos to securely manage their content.

• Secure, web-enabled access to documents and files

• Easy-to-use document collaboration and workflow

• Integrated document classification and retention

• Rapid application and portal integration

• Proven reliability and scalability

For more information please call 1.888.4XYTHOS or visit www.xythos.com
Xythos Software, Inc., 655 Montgomery, Suite 1600, San Francisco, CA 94111

Discover how Northeastern University became a CIO Bold 100 and Computerworld award winner
with Xythos – Read the case study at www.xythos.com/neu

JDJ.SYS-CON.com14 January 2006

eal-time data validation is
one of the advantages of
AJAX technology. By apply-
ing this technology, the struts

validation framework will enrich
the struts MVC and move the Web
application closer to the desktop
application.
 The validation framework is used
to validate fields. There are many
ways to do validation on a Web ap-
plication. It falls into two categories:
server-side and client-side. A struts
validation framework is one of the
best frameworks for a Java-based
Web application environment. It
can configure the application using
server-side validation and employ
the error message that renders on the
validation process invoked during
the request processing time, or it can
do client-side validation by using the
JavaScript rendered on the requested
page.
 AJAX is a JavaScript technology
that can asynchronously call the
server and fetch the XML documents
that are so popular lately. One of its
uses is real-time data validation.
 This article is concerned with
enriching the existing struts valida-
tion framework with AJAX. A few
components, such as a controller,
have to be developed to select the
validation framework and render the
specific format message for the client
side and a taglib to handle the error
message rendering.

Prerequisites
 You’ll need a Windows system with
Eclipse and the Tomcat application
server. Make sure that the MSXML 3.0
ActiveX object is registered on your
operating system. You’ll also need the
Struts library (http://struts.apache.

Tutorial

by Sonny Hastomo

Struts Validations
Framework Using AJAX

R

Sonny Hastomo is an IT

architect at Jatis Solution

company (Oracle and

WebLogic Business Partner)

for the product development

division. His current focus is

to integrate the J2EE Web

framework, which is suitable

for the product development,

and interfacing other legacy

applications based on the

Unix or OS/400 Platform.

hastomo_net@yahoo.com

Enriching the existing framework

 Figure 1 AjaxForm Class Hierarchy

java.io.Serializable
org.apache.struts.action.ActionForm

+ActionForm
+getServletWrapper : org.apache.struts.action.Action
+reset : void
+validate : org.apache.struts.action.ActionErrors
+validate : org.apache.struts.action.ActionErrors
multipartRequestHandler : org.apache.struts.upload
servlet : org.apache.struts.action.ActionServlet

net.sf.struts.servlet.StrutsActionServlet

+getServletMapping : String

net.sf.struts.forms.AjaxForm

validationAreaId : String
validationFramework : String

javax.servlet.http.HttpServlet
org.apache.struts.action.ActionServlet

 Figure 2 ErrorMessageHandler Class Hierarchy

#log : org.apache.commons.logging.Log
classorgapache$struts$tiles$TilesRequestProcessor : java

definitionsFactory : org.apache.struts.tiles.DefinitionsFactory

+init : void
+TilesRequestProcessor
#doForward : void
#initDefinitionsMapping : void
#internalModuleRelativeForward : void
#internalModuleRelativeInclude : void
#processTilesDefinition : boolean
<clinic> : void
class$: java.lang.Class

org.apache.struts.action.RequestProcessor
org.apache.struts.tiles.TilesRequestProcessor

+addNextXMLMessage : void
+buildXMLMessage : void
+getXMLMessage : String

description : String
identity : String

Serializable
net.sf.xml.handler.ErrorMessageHandler

isAjaxFramework : boolean
-CONSTANT_ASTERIK : String
-CONSTANT_EMPTY : String
-CONSTANT_END_BRACKET : String
-CONSTANT_KEY_PROCESS : String
-CONSTANT_KEY_XML : String
-CONSTANT_START_BRACKET : String
-CONSTANT_VALIDATION_FRAMEWORK_AJAX : String
-CONSTANT_VALIDATION_FRAMEWORK_ARG : String
-CONSTANT_VALIDATION_FRAMEWORK_NORMAL : String
-CONSTANT_VALIDATION_ID_ARG : String
-CONSTANT_VALIDATION_TYPE_ARG : String
-CONSTANT_XML_CONTENT_TYPE : String
-sbXMLMessage : StringBuffer

net.sf.struts.processor.AjaxValidationRequestProcessor

+process : void
#doForward : void
#generateXMLMessage : void
#getMessage : String
#processValidate : boolean

15January 2006JDJ.SYS-CON.com

org) and the JDOM library (http://
www.jdom.org) for XML development
(see Figures 1 and 2).

Server-Side Scenario
StrustsActionServlet
 We have to extend the class
from org.apache.struts.action.Ac-
tionServlet to get the servletMapping
variable that stores the information
on how the extension will be for-
matted for action classes into the
action path as a browser address.
When the code is added, we have
to configure web.xml as a Web appli-
cation descriptor for the application
server.
 The web.xml configuration:

…

<servlet>

<servlet-name>action</servlet-name>

<servlet-class>net.sf.struts.servlet.

StrutsActionServlet</servlet-class>

…

<servlet-mapping>

<servlet-name>action</servlet-name>

<url-pattern>*.do</url-pattern>

</servlet-mapping>

…

 The StrutsActionServlet Java code
looks like this:

public class StrutsActionServlet extends

the ActionServlet.

{

public String getServletMapping() {

return this.servletMapping;

}

}

AjaxValidationRequestProcessor
 To support the existing Struts
framework in the first step, we have
to extend the RequestProcessor
from the Struts package. We have
to customize the request processor
because we have to distinguish how
we’re going to do the validation – by
using the existing Struts framework or
the AJAX concept – and because we’ll
be making a contract between the
server and client on how to interpret
the message. In the message render-
ing we’ll use the XML format, which is
a good media messaging format. The
definition of the XML format we’ll
apply is:

XML Format
<?xml version=”1.0” encoding=”UTF-8”?>

<message>

<identity name=messageAreaId>

 <description>

 MessageValue

</description>

</identity>

</message>

Description
• Identity is the ID for the client

JavaScript to acknowledge where
the message will be placed.

• Description is the result after the
error message rendering from the
server side.

 First we need to get the servlet
mapping configuration from the
Web descriptor before moving onto
the process mapping. After invok-
ing the process, the application will
prepare the instance of the form that
inherits from the AjaxForm class. The
processing manages AJAX validation

and should check to ensure that the
request from the client isn’t using
the struts validation framework.
Other processes to perform during
the request are process populate
for collecting the information sent
by the client into the action form,
and process validation by using
the method from the existing Struts
validation framework that already
exists in the parent class of AjaxVali-
dationRequestProcessor (TilesRe-
questProcessor).
 The validation process from the
TilesRequestProcessor will invoke all
the validation based on the struts
validation framework and store the
action errors into the request. What
we need is to parse the action errors
into pieces and generate the XML
message validation that will be sent
to the client side. Since we want to
change the behavior of how the vali-

 Figure 3 Controller Processing flow

actor

1: process(HttpServletRequest request, HttpServletResponse response) : void//i...

<initial> : AjaxValidationRequestProcessor servlet : StrutsActionServlet

if(request.getParameter(CONSTANT_VALIDATION_FRAMEWORK_ARG)!=null)

if(this.servlet instanceof StrutsActionServlet)
1.1:getServletMapping():String//invokegetServletMapping

if(!StringUtils.isEmpty(servletMap))
1.2: processMapping(request, response, actionPath):org.apache.strut...

1.3: processActionForm(request, response, mapping):org.apache.strut...

1.4: processPopulate(request, response, form, mapping):void//invoke...

1.5: processValidate(request, response, form, mapping):boolean//invoke...

if(form instanceof AjaxForm)

if(!StringUtils...)
1.5.1:getValidationFramework():String//invoke getValidationFrame...

1.5.2:getValidationAreaId():String//invoke getValidationAreaId

1.5.3:<super>processValidate(request, respnse, form, mapping):boo...

if(!isTrue && is AjaxFramework)

try
1.5.4: generateXMLMessage(errors, identity, locale, sbXMLMessage):v...

1.5.4: <default constructor>

JDJ.SYS-CON.com16 January 2006

dation will be backed, the validation
process should check the indicator of
the validation framework being used
(see Figure 3).
 Generate the XML messages using
JDOM as the processing engine.
As shown in Figure 4, when the
process validation is invoked and
the condition of the validation
framework is equal with the AJAX
validation framework, the process
will continue to populate the error
message and build the XML message
validation.

ErrorMessageHandler
 This class handles the functional-
ity of the XML message builder. This
Java class will be building the XML
message based on the identity and

description property. After the caller
invokes the buildXMLMessage, it will
prepare the document and set the
root element of the XML message.
This class also has an addNextXMLM-
essage function to add more valida-
tion messages into the XML (see
Listing 1).
 The process method will set the
content type of the response as
“text/xml” and send the XML mes-
sage as a string. The function of the
process on the AjaxValidationRe-
questProcessor code will look like
Listing 2.
 The processValidation method
will populate the action errors and
construct the message based on the
format contract of the XML for the
client. The function of processVali-

dation on AjaxValidationRequestPro-
cessor code will be look like:

…

 ActionErrors errors =

(ActionErrors) request

.getAttribute(Globals.ERROR_KEY);

 Locale locale = (Locale)

request

.getAttribute(Globals.LOCALE_KEY);

generateXMLMessage(errors, identity,

locale, sbXMLMessage);

…

Client-Side Scenario
Build the Taglib Component
• AjaxJavaScriptLibraryTag: The

taglib component to render the
JavaScript function at the client
side for basic XMLHTTP controller
functions.

• AjaxErrorHtmlRenderTag: The
taglib component to render the
area of the error message at the JSP
page.

Configuring the Taglib Definition
 After developing the taglib compo-
nent, we need to configure the taglib
tld file as shown in Listing 3.

Build JSP and Struts Configuration
 To simulate the result of the
validation processing, we first need
to build the presentation layer by
incorporating the taglib that we’ve
build. In this case I’m trying to give
an example validation by using the
validation rules component from
Struts, and also the validation that
comes from the form itself. Prepare
five textboxs under the JSP page. The
first to fourth textbox are using the
validation rule configuration, and
the fifth textbox is using the validate
process from the action form. Other
than that, we also need a submit but-
ton to simulate that after submitting
the form, the existing struts valida-
tion are still working without AJAX.
The user interface will look like
Figure 5.

Tutorial

 Figure 4 Filtering and XML Validation Generation Process

1.5.4: <default constructor>

<initial>:AjaxValidationRequestProcessor form:AjaxForm errors:ActionErrors error:ActionError

catch(Exception e)

1.4.10: getXMLMessage():String//invoke getXMLMessage

else
1.4.9: addNextXMLMessage():void//invoke addNextXMLMessage

if(isFirstTime)
1.4.8: buildXMLMessage():void//invoke buildXMLMessage

1.4.7: setDescription(errorMessage):void//invoke setDescription

1.4.6: setIdentity(identity):void//invoke setIdentity

for(int i = 0;i < value.length;i++)
if(value!=null)

1.4.5: getValues():java.lang.Object[]//invoke getValues

if((errorMessage = resource.getString(key))!=null)

if(locale!=null)

else

for(int i = 0;i < configs.length;i++)

1.4.4: getMessage(error.getKey(),locale):String//invoke getMessage

1.4.3: getKey():java.lang.String//invoke getKey
while(itError.hasNest())

1.4.2: get(identity)

1.4.1: <default constructor>

1.4: generateXMLMessage(errors,identity,locale,sbXMLMessage):void...
try

if(!isTrue && is AjaxFramework)

1.3: <super>processValidate(request,response,form,mapping):boolean...

handler:ErrorMessageHandler

1.4.8.1: addNextXMLMessage():void//invoke addNext

Real-time data validation is one of the advantages of AJAX technology”“

JDJ.SYS-CON.com18 January 2006

Tutorial

Build Action and Action Form
 For the Struts action, we just for-
ward to the JSP we already built. The
Action code will look as follows:

public ActionForward execute(…) {

return mapping.findForward(“success”);

}

 The Action Form code will validate
the requiredText property if the input
is blank. Remember to extend this
form from the AjaxForm class. The
validate method of action form will ap-
pear as follows:

public ActionErrors validate(…) {

 ActionErrors errors = new

ActionErrors();

 if (StringUtils.isEmpty(this.

requiredText)) {

 errors.add(“requiredText”, new

ActionError(“error.required.input”));

 }

 request.setAttribute(Globals.ERROR_

KEY, errors);

}

Applying Struts Validation Rules
 The configure Struts validation rule,
such as minimum length, maximum
length, e-mail, and pattern text, will be
applied to the input object of the client
and the configuration will be similar to
Listing 4.

Validation Processing Flow
 First the client will initiate the
XMLHTTP component to perform the
request to the server and, then, on the
event the user trigger starts to build,
the parameter of the URL will be sent
to the server. After its finish building
the parameter, the client will attach the

event of the oneadystatechange XML-
HTTP to listen to the response from
the server-side. When the response is
accepted, the client side will start to
parse the XML validation message and
set the message into the right area (see
Figure 6).
 When the request is accepted to
the server, the server will start to check
the parameter of the AJAX validation
condition and process the validation.
Once it’s finished, the errors object
generated will be filtered into the
specific error that is related to the user
input object. From this point, the XML
message will be generated after the
filtering process is done and sent back
to the client (see Figure 7).

Summary
 In this article we built a controller
that has the ability to receive asyn-
chronous requests from the client and
incorporate with the struts validation
process to produce the action error ob-
ject. Filtering the specific input object
being validated will be done after the
error object produces and generates the
XML message as a reply to the client-
side to indicate the error message.

 Figure 5 JSP Validation Page

 Figure 6 Client Side Processing Flow

<initial>:AjaxValidationRequestProcessor

init ()

buildURLParameter

sendRequest

Start

End

parseXMLResponse

Listen the
response

Display Error
Message

 Figure 7 Server Side Processing Flow

Request
Accepted

Start

Start

Ajax Validation N RequestProcessor
process

Y

Populate query
string to Ajax form

Process validation

Send response to
client

Filtering errors

Generate error
xml message

Application validation test result case using AJAX inside the struts validation framework

 Case struts validation framework

JDJ.SYS-CON.com20 January 2006

ince 2001 when Java Authentica-
tion and Authorization Service
(JAAS) was formally included in
the Java 2 Platform Enterprise Edi-

tion (J2EE) 1.3 platform specification, the
J2EE community has been grappling with
the issue of JAAS/J2EE integration. On
the surface, JAAS seems to be an excel-
lent complement to J2EE: JAAS defines
a pluggable Application Programming In-
terface (API) for authentication modules
and a fine-grained Subject-based autho-
rization model, which are both lacking
in the existing J2EE security model. Since
JAAS is officially part of the J2EE platform
specification, it’s not unreasonable to ex-
pect that you can now leverage the JAAS
framework to build portable enterprise
applications that have advanced authen-
tication and authorization requirements.
Unfortunately, any Java architects or
developers who go down this path for
their applications will soon be con-
fronted with the harsh reality: Instead of
finding a landscape defined by an unified
integration architecture, they’ll discover
a landscape littered with incompatible
vendor-specific APIs and frameworks.
 If JAAS and J2EE seem to fit well to-
gether, why is there such a fragmented
landscape? What has contributed to
this fragmentation, and more impor-
tantly, what lies ahead? In this article
we’ll explore the main security issues
that architects and developers must
consider when designing J2EE-based
solutions for enterprise deployments.
We’ll also highlight some of the ongoing
standards-based efforts that will make it
easier to include advanced authentica-
tion and authorization capabilities in
your enterprise applications. Finally,
we’ll offer some pragmatic strategies
you can consider today, while waiting
for the standards to catch up.

JAAS and J2SE
 JAAS is designed to bring Subject-
based authentication and authoriza-
tion to the Java 2 platform. On the
authentication side, JAAS is modeled
after the Pluggable Authentication
Module (PAM)–a popular API for
defining authentication modules in a
portable and extensible manner. On
the authorization side, JAAS inherits
the rich, fine-grained, and extensible
security model defined in Java 2. When
JAAS was first introduced as an op-
tional package for JDK 1.3, there was,
understandably, quite a bit of excite-
ment: “Finally, a real security standard
for the Java platform!” (Not that code-
based security isn’t important, but a
lot of us were waiting for a user-based
authentication and authorization
model.)
 Indeed, JAAS 1.0 did achieve a few
significant wins for Java developers. It
offered a standard way to develop au-
thentication modules (via JAAS Login-
Modules – see Figure 1) and a flexible
way for the authentication modules to
gather information dynamically from
the application (via CallbackHandler
– see Figure 2). It also offered a way to
integrate Subject-based authorization
into the Java 2 platform without affect-
ing the code-based security model.
 Of course, being hard-nosed, prag-
matic people, we were also realistic

– or so we thought – in our expecta-
tions: “It’s only Version 1.0 of this API,
and it’s released as an optional exten-
sion, to boot. It’ll probably be a few
years before it goes mainstream.”
 Not surprisingly, when JAAS 1.0 was
introduced, there were a few issues.
As an optional extension, the JAAS
jar files weren’t generally available as
part of the regular JDK distribution.
In addition, its add-on nature was
reflected in the API design – instead of
having one policy that dealt with both
Subject- and code-based policies, we
had to deal with two separate policies
(each with its own API) and some
obscure DomainCombiner logic that
updates the protection domains based
on these policies at runtime.
 Fortunately for Java developers
everywhere, these issues largely went
away when JAAS was fully integrated
into the core Java security architec-
ture in JDK 1.4: JAAS was distributed
as part of the regular JDK distribution,
and the Java 2 security model is now
the JAAS security model – one secu-
rity model, one policy API. (Please
refer to Java 2 Security Architecture (
http://java.sun.com/j2se/1.4.2/docs/
guide/security/spec/security-spec.
doc.html) for more details about
JAAS/J2SE security model.)

JAAS and J2EE
 Most Java developers would agree
that if there were a Java development
platform that could really benefit
from a user-based authentication and
authorization standard, it would be
the J2EE platform, where security is
paramount and user-based security,
in particular, is essential to any enter-
prise-ready applications. Thus J2EE,
unlike J2SE (Java 2 Platform Standard

Enterprise

by Raymond K. Ng
and Ganesh Kirti

JAAS in the Enterprise

S

Raymond K. Ng is a

development lead at Oracle

and has 11 years of industry

experience. Ng currently

leads the design effort of Java

Platform Security in the Oracle

Fusion Middleware Group at

Oracle. He also serves as

Oracle’s Expert Group

representative in JSR 115

(JACC) & JSR 196.

raymond.k.ng@oracle.com

An integration proposal

It’s almost impossible to write one JAAS login module that works
equally well in all J2EE 1.3/1.4 containers”“

SUPERCHARGE

YOUR APPS WITH

THE POWER OF

LOCATION

INTELLIGENCE

Contact us at sales@mapinfo.com

Try it and see for yourself. Visit www.mapinfo.com/sdk
Learn more about the MapInfo Location Platform for Java,
access whitepapers and download free SDKs.

Create applications for:
• Web-based store location finders • Visualizing where your customers are
• Analyzing where revenue comes from – and where it doesn’t • Managing assets such as cell towers, vehicles and ATMs

100% Java SDK enables Location
Intelligence through web services

Create desktop & web UIs using
Swing, JSP and JSF Components

Integration with Eclipse, NetBeans,
IntelliJ and more

JDJ.SYS-CON.com22 January 2006

Edition), came with a rather sophisti-
cated user-based security model
since J2EE 1.0. With the introduction
and subsequent integration of JAAS
into the J2SE platform, the main ques-
tion has now become: “How do we
integrate JAAS into J2EE?” (This is a
question Graham Hamilton posed
to the Java security experts at a
one-day Java security summit held
in Boston shortly after JAAS 1.0 was
introduced.)
 On the surface, it appears that JAAS
and J2EE complement each other
very well. Although J2EE defines a
declarative way to configure the au-
thentication method to be used with
a Web/EJB module, it doesn’t define
a pluggable authentication module
API; JAAS (with its LoginModule API)
nicely fills this void. And although
J2EE authorization serves quite well
the security needs of typical (security-
unaware) Web-based and EJB-based
applications, it’s also a rather coarse-
grained and inflexible model (the only
privileges supported are URL-based
and EJB method-based). The JAAS/
Java2 permission-based model is
extensible and can model arbitrarily
complex and fine-grained authoriza-
tion policies.
 Given these considerations, it wasn’t
surprising that shortly after its intro-
duction, JAAS 1.0 was included as part
of the J2EE 1.3 platform specification.
Unfortunately — perhaps due to time
and resource constraints — there were
no provisions in the J2EE 1.3 speci-
fication regarding how JAAS 1.0 was
to be integrated into J2EE-compliant
containers. In other words, it’d be up to
each container vendor to figure out the

right integration strategy. Inevitably,
because different vendors decided to
do this in different enough ways, the
fact that JAAS 1.0 was officially part of
J2EE 1.3 isn’t very meaningful to Java
developers — at least to those who
care about developing portable J2EE
applications.
• Consider authentication: While it’s

possible to write a JAAS-based login
module that works properly in a
J2EE 1.3/1.4-compliant container,
it’d be difficult – in fact, almost
impossible – to write one JAAS login
module that works equally well in all
J2EE 1.3/1.4 containers.

• Consider authorization: While it
would be possible for a J2EE appli-
cation to use the JAAS policy API and
Java 2 permission model to handle
fine-grained authorization policies,
it’d be impossible for such an appli-
cation to retrieve the JAAS Subject
(representing the currently authenti-
cated user) in a portable manner.

JAAS/J2EE Integrated:
Secure Enterprise Applications
 Before we get into too much detail,
let’s step back and ask ourselves:
“What would a truly JAAS/J2EE
integrated architecture look like?”
Put it this way. If you were the project
manager responsible for this integra-
tion project, what would be on your
project’s wish list?
 First, let’s consider authentication:
JAAS has defined a portable, exten-
sible API for authentication modules
that lets you reuse a well-behaved
LoginModule implementation in
different contexts. What does this
mean in a J2EE context? We believe

a reasonable goal for a JAAS/J2EE
integration architecture would be to
let any JAAS-compliant login module
be plugged into any J2EE-compliant
container — without any modifica-
tions. In other words, you should be
able to develop or buy/download an
RDBMSLoginModule to use with your
applications and expect it to work
well in all J2EE-compliant application
servers that might end up hosting
your applications. Given certain
reasonable constraints (for example,
the RDBMSLoginModule shouldn’t
use any protocol-specific Callbacks),
it should also work equally well for
most of the managed resources (such
as servlet/JSP, EJB, or MBeans) over a
variety of connection protocols (such
as HTTP, RMI/IIOP, or JMX/RMI).
 Now, let’s consider authoriza-
tion. We believe a properly designed
integration architecture should cover
the following: First, the J2EE authori-
zation model should work properly in
a JAAS/J2EE context. In other words,
using a JAAS LoginModule to handle
authentication for your application
doesn’t mean you want to get rid of
the nice declarative security con-
straints you’ve worked hard to exactly
fit your application. Also, the man-
aged component (such as Servlet/
JPS, EJB, or MBeans) should be
invoked in an execution context
where the currently authenticated
user (represented by a JAAS Subject
instance) is readily available (via JAAS
API) to the component. (In standard
JAAS, this typically means the man-
aged component is invoked within
a Subject.doAs[Privileged] block.)
Finally, the legacy J2EE authorization
API (such as isCallerInRole/getCall-
erPrincipal) should work properly
in a JAAS/J2EE context; this means
that if your application is security-
aware and uses isCallerInRole to do
advanced role-based processing,
your application should continue
to work in a JAAS/J2EE-integrated
environment.
 So far, we’ve only outlined the
basic requirements; these ensure that
JAAS and J2EE play well with each
other, and that the legacy applications
or modules developed with either
context in mind continue to work
well in an integrated environment. A
JAAS/J2EE integration framework that

Enterprise

Ganesh Kirti is a senior

software development

manager at Oracle with 11

years of industry experience.

He currently leads development

of Java Platform Security in the

Oracle Fusion Middleware Group

at Oracle. Ganesh has a

wide range of engineering

experience including

developing identity

management and

SOA security products.

ganesh.kirti@oracle.com

 Figure 1 JAAS authentication architecture

Applications

JAAS API (LoginContext)

JAAS SPI (LoginModule)

JndiLoginModule Krb5LoginModule RDBMSLoginModule

Configuration

JDJ.SYS-CON.com24 January 2006

implements these requirements in a
reasonable manner might be consid-
ered a solid investment, but probably
not something worth jumping up and
down about.
 Yet these basic requirements do
bring about a level of power and
sophistication not seen before in J2EE
security. For instance, by leveraging
the integrated JAAS/J2EE architecture,
you can finally build advanced enter-
prise applications that authenticate
via a custom (application-specific)
user repository (via standard JAAS
LoginModules); leverage a coarse-
grained J2EE authorization model for
pre-dispatch authorization decisions;
and leverage a customized, fine-
grained JAAS permission model to
protect application-specific resources.
And you achieve all of these without
sacrificing portability.
 This is nothing to be sneezed at
– and if you’re like us, you’re prob-
ably salivating at the possibilities this
combination has opened up for your
application architecture...
 Not so fast. Yup — there’s a catch.

The Current Landscape
 Equipped with this modest list of
requirements, we’re ready to evaluate
the current landscape. As an industry,

how do we fare in this context? In a
nutshell, not very good. In fact, if we
use this basic requirement list as a
scorecard, most vendors wouldn’t do
well at all.
 One thing worth noting about
these basic requirements. Modest as
they are, none of them are addressed
in J2EE 1.3! No wonder the current
JAAS/J2EE integration landscape isn’t
pretty. (Unfortunately, even with JACC
(JSR 115) being part of J2EE 1.4, many
of these requirements are still not met.
We’ll discuss the role of JACC later in
this document.) We can and should do
better.
 We don’t want to speculate why
and how this came to be, but we can
assume there were good reasons to
incorporate JAAS 1.0 as is into J2EE 1.3
without spelling out all the integration
details. By taking this approach, as
vendors gain experience by doing the
real integration work, the experience
will be taken into consideration in the
next J2EE update. In fact, we think
that’s what happened with the JAAS/
J2EE integration process. The real
integration work has only just begun.

Standardization Efforts
 Slowly but surely, the standard-
ization process is beginning to fill

some of the voids left out in J2EE
1.3. We’ll examine the two main JSRs
(Java Specification Requests) directly
related to the topic under discussion.
Not surprisingly, there are primar-
ily two relevant JSRs. One deals with
authentication and the other with
authorization.

JSR 115 Java Authorization Contract
for Containers (JACC)
 Incorporated as part of the J2EE 1.4
specification, the explicit intent of JSR
115 is as follows:
 Define new java.security.Permission
classes to satisfy the J2EE role-based
authorization model. The specification
will define the binding of container
access decisions to operations on in-
stances of these permission classes. The
specification will define the semantics
of policy providers that employ the
new permission classes to address the
authorization requirements of J2EE.

 In a nutshell, this specification
aims to consolidate the J2EE and JAAS
authorization models by defining Java
2 permission classes that capture J2EE
security semantics.
 Since this specification is adopted
as part of J2EE 1.4, any J2EE 1.4-com-
pliant containers have built-in JACC
support.
 As a first release, JACC has achieved
its primary goals — i.e., to define
Permission classes for J2EE security
constraints (thereby consolidating the
authorization models) and to define
a standard contract between the con-
tainer and the policy provider (thereby
achieving limited interoperability). On
the other hand, JACC 1.0 — just like
any 1.0 specifications — isn’t without
issues.
 JACC 1.0 doesn’t clarify how J2EE
API such as getCallerPrincipal (which
assumes a single java.security.Prin-
cipal instance to be returned) should
behave when multiple Principals are
associated with the Subject represent-
ing the currently authenticated user as
a result of JAAS authentication.
 By affording the container a degree
of flexibility regarding how authoriza-
tion decisions are to be done, it’s not
clear how an application can reliably
retrieve the Subject representing the
currently authenticated user in a por-
table manner.

Enterprise

 Figure 2 Sample JAAS authentication call sequence

MyApp

MyCallbackHandlernew

new

new

Configuration

getConfiguration

login

LoginContext

getSubject

commit

Subject

FooLoginModule
Class.newInstance

initialize

login

handle(callback[])

getPrincipals().add()

25January 2006JDJ.SYS-CON.com

 The authorization SPI as defined in
JACC 1.0 is somewhat incomplete, thus
compromising interoperability – spe-
cifically, it doesn’t define a standard
way to map J2EE logical roles to de-
ployment principals. The definition of
a standard role-to-principal mapping
facility will be critical to achieve true
PnP (plug-and-play) for JACC policy
providers.
 While there are still issues to be
hashed out, we view JSR 115 as a step
in the right direction. We expect future
updates of JSR 115 that address the
issues we’ve identified here.

JSR 19: Java Authentication Service
Provider Interface for Containers
 The explicit goal of this JSR is as
follows:
 The proposed specification will define
a standard service provider interface
by which authentication mechanism
providers can be integrated with con-
tainers. Providers integrated through
this interface will be used to establish
the authentication identities used in
container access decisions, including
those used by the container to invock
components in other containers. The
specification will define standard inter-
faces between containers and authenti-
cation modules...

 Thus JSR 196 can be viewed as the
authentication equivalent of JSR 115.
It seeks to define a standard SPI via
which authentication modules can
be integrated with containers –
much like how JSR 115 defines a
standard authorization SPI through
which policy modules are integrated
with containers.
 As we write this article, only an early
draft is available for review. Contained
in this draft, however, is a chapter
dedicated to JAAS integration called
“LoginModule Bridge Profile.” In this
chapter a standard approach to inte-
grate JAAS LoginModules with JSR 196
authentication modules is articulated.
In so doing, this specification has the

potential to effectively fill another void
we have identified earlier – the need to
standardize how a JAAS LoginModule is
integrated with containers.
 Note that while this JSR is targeted at
J2EE 1.4 and above, the JSR is currently
lagging behind the original proposed
schedule and is not part of J2EE 5 (nor
does its inclusion appear likely, as J2EE
5 is already in “proposed final draft”
stage).
 Nonetheless, the eventual adop-
tion of JSR 196 should be good news
to those who have invested in JAAS
architecture for authentication. We
look forward to working with the speci-
fication leads to ensure that the JAAS
LoginModule integration is properly
defined in the specification.

JAAS/J2EE Integration Strategies
for Today
 So you’re an enterprise application
architect and you see the clear benefits
of an integrated J2EE/JAAS integration
architecture. You know the standards
are heading in the right direction, but
you need a solution that works today.
What are your options?
 Obviously, you can stick to one
vendor’s implementation and migrate
to standard-based containers when the
standards catch up with your needs.
The upside of this approach is that
there’s little bootstrapping cost and
you can start development right away.
The downside is that your application
is locked-in to a specific vendor’s API
— and you’ll ultimately pay the price
of either sticking with your container
vendor no matter what or re-writing
your application when the standards
are ready. Obviously, the extent to
which your vendor of choice fulfills the
requirements identified in this article,
the better insulated your application
will be from vendor-specific lock-in.
 Another approach is to add an ad-
ditional level of indirection. Instead
of sticking with one vendor’s API, you
devise a thin wrapper layer for a small
number of APIs (such as the equivalent

of Subject.getSubject), which insulates
your application from vendor-specific
APIs. The upfront cost of this approach
is obviously a bit higher — you’ll have
to design the wrapper layer, after all
— but the benefit is also obvious.
Your application will be shielded from
vendor lock-ins and it’d be relatively
easy to deploy it to a different vendor.
(This assumes that the thin wrapper
layer is properly designed so that it’s
configurable and it defines a SPI (Ser-
vice Provider Interface) layer that lets
you add plug-ins for different container
vendors.) In general, we recommend
this approach if you can afford the
upfront cost.
 Finally, you can search the Inter-
net for open source or commercial
projects that take care of this for you.
At the time of this writing, there weren’t
many portable JAAS/J2EE integration
frameworks (open source or otherwise)
available, but things change, so keep an
eye out for new efforts in this direction.

Conclusion
 JAAS and J2EE are complimentary
technologies that play well together.
We feel that a properly defined JAAS/
J2EE integration architecture provides
a flexible and powerful foundation on
top of which sophisticated, secure and
portable enterprise-level applications
are made possible. Though today’s
landscape is somewhat less than per-
fect, the industry experts are hard at
work to resolve the issues identified in
this article. It’s our hope that a reason-
ably complete JAAS/J2EE architecture
will emerge out of the standard bodies
in the near future.
 For the Java architects and design-
ers that need a solution today, fear
not – you don’t need to sit idly waiting
for the standards to catch up. With
some careful forethought and strategic
thinking, we believe it’s possible to
design secure JAAS/J2EE-based appli-
cations that work in today’s containers
– and perhaps more importantly – in
tomorrow’s containers as well.

A properly defined JAAS/J2EE integration architecture provides a
flexible and powerful foundation on top of which sophisticated,

secure and portable enterprise-level applications are made possible”
“

JDJ.SYS-CON.com26 January 2006

recently evaluated the use of Acegi
as the security framework for a Web
development project. In the end, we
decided to move forward with Acegi

but in the beginning it took a couple
days to come to that decision. The
amazing thing is: once you get over the
initial learning curve, it’s smooth sailing.
Hence, I wanted to share my experi-
ences with it because first, I wanted to
expose the Acegi security framework
to JDJ readers and, second, I wanted to
make it easier for JDJ readers to get over
the initial learning curve. Once you’re
over that, you should be well on your
way with Acegi.

Exposing Acegi Security Framework
 Acegi is an open source security
framework that allows you to keep your
business logic free from security code.
Acegi provides three main types of
security:
1. Web-based access control lists (ACL)

based on URL schemes
2. Java class and method security using

AOP
3. Yale’s Central Authentication Service

for single sign-on (SSO).

 Acegi also provides the option of
performing container security.
 Acegi uses Spring as its configuration
settings, so those familiar with Spring
will be at ease with Acegi configuration.
If you’re not familiar with Spring, it’s still
easy to learn Acegi configuration by ex-
ample. You don’t have to use SpringMVC
to secure your Web application. I have
successfully used Acegi with Struts. You
can use Acegi with WebWork and Veloc-
ity, Struts, SpringMVC, JSF, Web Services,
and more.
 Why use Acegi instead of JAAS? It can
be difficult to stray from well-docu-
mented standards like JAAS. However,
porting container-managed security
realms is not easy. With Acegi, this se-
curity layer is an application framework
that is easily ported. Acegi will allow you

to easily reuse and port your “Remem-
ber Me,” “I forgot my password,” and
log-in/log-out security functions to dif-
ferent servlet and EJB containers. If you
have a standards-based security layer
that you have re-created for numerous
Java applications and it is not getting
reused, you need to take a good look at
Acegi. Besides, why are you spending
time on framework coding when you
should be focusing on the business
logic? Leave the framework develop-
ment to product developers and the
open source community.

Getting Over That Initial Learning Curve
 To get you over the initial learning
curve, I’ll take you through a simple set-
up using a demonstration application.
I’ll focus on the first security approach
– URL-based security for Web applica-
tions because that’s the most commonly
used.

Installation
 First things first – we need to install it!
I’ll use Tomcat 5 as my servlet container
to illustrate.

Step 1: Set up a new Tomcat Web context
with the “WEB-INF/”, “WEB-INF/lib/”,
and “WEB-INF/classes” folders per
usual (see Figure 1). I called my context
“/acegi-demo” and access it using
http://localhost:8080/acegi-demo/.

Step 2: Add another folder called “/se-
cured,” which we’ll protect with Acegi.

Step 3: Now let’s add the necessary
Acegi library files to plug-in Acegi to our
Tomcat context. (Please download the
acegi-demo.zip file provided with this
article from http://jdj.sys-con.com.)
 Let’s understand the JAR packages we
are adding to the lib directory. The most
important JAR is acegi-security-0.8.3.jar,
the Acegi core library. Acegi leverages
Spring for its configuration, so we also
need spring-1.2.RC2.jar. The remaining

JARs are utilities libraries for dealing
with collections (commons-collections-
3.1.jar), logging (commons-logging-
1.0.4.jar, log4j-1.2.9.jar), and regular ex-
pressions (oro-2.0.8.jar). Special thanks
to Apache Jakarta for these wonderful
utility libraries.

Configuration
 Now that we have our core infra-
structure in place, let’s focus on
configuration.

Step 4: Configure the web.xml file (see
Listing 1) to begin tying the Web appli-
cation to the Acegi security framework.
1. First, we need to set up two param-

eters: contextConfiguration, which
will point to Acegi’s configuration
file, and log4jConfigLocation, which
will point to Log4J’s configuration
file.

2. Next, we have to set up the Acegi
Filter Chain Proxy; this critical proxy
allows Acegi to interact with the
servlet filtering feature. We will talk
about this more in step 5 (configur-
ing applicationContext.xml).

3. Finally, we want to add three listen-
ers to loosely couple Spring with the
Web context, Spring with Log4J and
Acegi with the HTTP Session events
in the Web context, such as create
session and destroy session.

Step 5: Now we need to configure the
applicationContext.xml (see Listing
2) to instruct the Acegi framework to
perform our security requirements. It
is important to note that you typically
don’t have to write or compile any code
to fuse your application with the Acegi
security framework. Acegi is almost
entirely configuration driven, thanks to
a great design by its creator, Ben Alex,
and Spring. Okay, enough back patting,
let’s get to it…
 Remember, the Acegi Filter Chain
Proxy is critical. This is the backbone of
the configuration. Using the servlet filter

First Look

by David Hardwick

Introduction to Acegi

I

David Hardwick is a

 technology manager at

Sapient Corporation,

a business innovator. He has

nearly 10 years of application

development experience in

commercial, government,

and non-profit sector

industries.

dhardwick@sapient.com

Mastering the security framework

27January 2006JDJ.SYS-CON.com

specification, Acegi is able to plug in its
security functionality in a modular way.
 I ordered the Spring bean refer-
ences in the applicationContext.xml
file based on the sequence each bean is
referenced, starting with the filterChain-
Proxy bean. If you are new to Spring,
just know that the order in which a bean
is referenced is not important. I ordered
it this way to make it as easy as possible
to follow along.

<bean id=”filterChainProxy” class=”net.

sf.acegisecurity.util.FilterChainProxy”>

 <property name=”filterInvocationDefi

nitionSource”>

 <value>

 CONVERT_URL_TO_LOWERCASE_BEFORE_

COMPARISON

 PATTERN_TYPE_APACHE_ANT

 /**=httpSessionContextIntegrationFil-

ter, authenticationProcessingFilter, anony-

mousProcessingFilter, securityEnforcement-

Filter

 </value>

 </property>

 </bean>

 In the filterChainProxy bean (see
code snippet above), we tell Acegi that
we want to use lowercase for all URL
comparisons and use the Apache ANT
style for pattern matching on the URLs.
In our example, we run the filterChain-
Proxy on every single URL by specifying
/**=Filter1,Filter2, etc. Next, we set up
the filter chain itself, where order is very
important. We have four filter chains
in this simple example, but when you
start using Acegi, you’ll most likely have
more. Viewing applicationContext.xml,
please take a few moments to follow all
the bean references in great detail as
you traverse the filter chain. I will walk
through each item in the filter chain at a
high level.
 The first item in the chain must be
the httpSessionContextIntegrationFilter
filter. This filter works hand-and-hand
with the HTTP Session object and the
Web context to see if the user is authen-
ticated and, if so, then what roles the
user has. We have little to configure for
this filter.
 The second item in the chain is the
authenticationProcessingFilter filter,
which searches for any URL that match-
es /j_acegi_security_check because this
is the URL that our login form will post
a username and password to when at-
tempting authentication. This filter also
contains the configuration information
detailing where to send someone if the

login succeeds or fails. If it succeeds,
you can configure this filter to direct
the user to the page the user originally
tried to access or direct the user to a
particular start page where you want
all authenticated users to land after
authentication. I have the latter option
configured in my example by setting
alwaysUseDefaultTargetUrl to true and
you just set it to false to get the former
option.
 One of the beans configured in the
authenticationProcessingFilter is the
authenticationManager bean. This
bean manages the various providers
you configure. A provider is essentially
a repository of usernames with cor-
responding passwords and roles. The
authenticationManager will stop iterat-
ing through the list of providers once
a user is successfully authenticated. In
practice, you may have two or three pro-
viders; for example, one provider could
access an Active Directory for employee
credentials, while your second provider
might access a database for customer
credentials. You will most often need
an anonymousAuthenticationProvider
because you need it to allow access to
pages that do not requiring authentica-
tion to access, such as the login page or
the home page. The demonstration ap-
plication for this article uses a memory
provider and an anonymous provider.
Once you get this simple application
working, you probably want to add a
JDBC or LDAP provider.
 The third item in the chain is the
anonymousProcessingFilter filter. This
will match the value created by the
anonymousAuthenticationProvider.
 The fourth and final item in the filter
chain is the securityEnforcementFilter
filter. This filter has two beans: the
filterSecurityInterceptor and the au-
thenticationProcessingFilterEntryPoint.
The latter bean is used to direct the user
to the login form each time the user
tries to access a secured page but is not
logged in. We can also force the user to
use HTTPS. The former bean, filterSecu-
rityInterceptor, does quite a bit of heavy
lifting by tying all our filters together.

 The filterSecurityInterceptor bean
checks that the authenticated user
has the right roles (or permissions) to
access a particular objectDefinition-
Source. Here we are using Affirma-
tiveBased voting, which means the
user just has to have one of the roles
specified in the objectDefinitionSource.
This is most likely what you will use,
but Acegi does have a unanimous voter
that ensures that a person has every
role specified in the objectDefinition-
Source before granting access. By now
you may have realized that object-
DefinitionSource determines who can
access what.
 The objectDefinitionSource starts
off with the same two configuration
instructions that filterChainProxy did,
namely converting all URLs to lower-
case and using the Apache ANT style
for regular expressions. Next, we define
which roles are allowed to access a
particular URL. In our example, we give
anonymous access to the /acegilogin.
jsp page so that unauthenticated users
can arrive at this page to log in. The
next line in the objectDefinitionSource
provides access to everything below
the /secured directory for any user with
the ADMIN role. Finally, we add a line
that starts with /** to match on every
URL. The filter will stop once the URL
matches on a URL, so make sure you
put specific regular expressions toward
the top and broad regular expressions
toward the bottom to ensure you get
the desired behavior. If you were work-
ing with Struts, you could either set up
your struts in modules http://struts.
apache.org/struts-core/userGuide/
configuration.html#5_4_1_Config-
ure_the_ActionServlet_Instance or
simply specify the StrutAction (e.g.,
/CustomerAdd.do) in the objectDefini-
tionSource.
 At this point, we are done with appli-
cationContext.xml file. To complete our
demonstration application, all we need
to do now is create a login form and put
something in the /secured directory to
see that our Acegi authentication and
authorization configuration is working.
(See the acegi-demo.zip for /acegilogin.
jsp and /secured/index.jsp.)
 The login form is very simple; it
has input fields for the username and
password, j_username and j_password,
respectively, and a form action pointing
to j_acegi_security_check since that is
what the authenticationProcessingFilter
filter listens for to capture every login
form submission. Figure 1 Folder Structure

JDJ.SYS-CON.com28 January 2006

 Test your configuration and inspect
the Tomcat logs and the Log4J log file
that we configured for this application if
you run into problems.

Now That I’m Over the Initial Learning
Curve, What’s Next?
 Once you have this simple Acegi
demonstration application running, you
will undoubtedly want to increase its so-
phistication. The first thing I would want
to do is to add a JDBC profile in addition
to the simple in-memory profile.
 I can understand the excitement
after getting the initial application up
and running, but you still have some
reading to do in order to eclipse the
initial learning curve. Read through
the articles posted in the External Web
Articles section of the Acegi Web site
http://acegisecurity.sourceforge.net.
Read through the Reference Documen-
tation provided by Ben Alex, the creator
of Acegi. Ben does a good job of provid-
ing help through the support forum
too. Also, read the well-kept JavaDocs
as your main source of information
once you get familiar with Acegi. Of

course, you can opt to read the source
code – it’s open source!
 Since this is your first time using
Acegi, test after each change to the ap-
plicationContext.xml file. The process
of “one change, then test” will help you
understand exactly what change to
the applicationContext.xml file caused
an error if one should occur. If you
make four changes to that file, restart
the application and get an error, then
you won’t know which one of the four
changes caused the error.
 Note that I kept this application very
simple. As you add in features such as
Acegi’s caching, you will need to add the
appropriate libraries (or JARs). Look at
the Acegi example application available
on the Acegi Web site to get access to all
the various libraries. The example appli-
cation on the Acegi Web site is complex,
so it is not the best place to start to get
over the initial learning curve, unfor-
tunately, hence my attempt to make it
easier with the article!

No Groups in Acegi?
 Acegi will let you work with the no-

tion of groups. When you put a person
in a group, you are just grouping the
permissions (or roles) that the group
does or does not have. So, when you
set up your LDAP or JDBC profile,
you need to make sure that the
query returns the roles that the users’
groups should have access to.

Conclusion
 Acegi is a very configurable,
open source security framework
that will finally let you reuse and port
your security layer components. It
can be daunting at first, but this ar-
ticle should easily remove the
stress in getting over the learning
curve. Remember, you need to get
this simple application running,
test after each change, and read
the recommended readings to fully
surmount the initial learning curve.
After you follow these steps, you will
be well on your way to mastering
Acegi.
 I welcome all feedback and/or sug-
gestions for further aspects of Acegi to
cover in future articles.

First Look

Listing 1
<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app

 PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”

 “http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>

<web-app>

 <display-name>Acegi Demo</display-name>

<!-- 1. Setup two parameters: -->

<!-- a) Acegiʼs configuration file -->

<!-- b) Loggin configuration file -->

 <context-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>

 /WEB-INF/applicationContext.xml

 </param-value>

 </context-param>

 <context-param>

 <param-name>log4jConfigLocation</param-name>

 <param-value>/WEB-INF/classes/log4j.properties</param-value>

 </context-param>

<!-- 2. Setup the Acegi Filter Chain Proxy -->

 <filter>

 <filter-name>Acegi Filter Chain Proxy</filter-name>

 <filter-class>net.sf.acegisecurity.util.FilterToBeanProxy</

filter-class>

 <init-param>

 <param-name>targetClass</param-name>

 <param-value>net.sf.acegisecurity.util.

FilterChainProxy</param-value>

 </init-param>

 </filter>

 <filter-mapping>

 <filter-name>Acegi Filter Chain Proxy</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

<!-- 3. Setup three listeners -->

<!-- a) Setup a listener to connect spring with the web context

-->

 <listener>

 <listener-

class>org.springframework.web.context.ContextLoaderListener</lis-

tener-class>

 </listener>

<!-- b) Setup a listener to connect spring with log4J -->

 <listener>

 <listener-class>org.springframework.web.util.Log4jConfigListener</

listener-class>

 </listener>

<!-- c) Setup ACEGI to subscribe to http session events in the

web context -->

 <listener>

 <listener-class>net.sf.acegisecurity.ui.session.HttpSessionE

ventPublisher</listener-class>

 </listener>

<!-- 4. The Usual Welcome File List -->

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

</web-app>

JDJ.SYS-CON.com30 January 2006

First Look

Listing 2
<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE beans PUBLIC “-//SPRING//DTD BEAN//EN” “http://www.spring-

framework.org/dtd/spring-beans.dtd”>

<beans>

 <bean id=”filterChainProxy” class=”net.sf.acegisecurity.util.

FilterChainProxy”>

 <property name=”filterInvocationDefinitionSource”>

 <value>

 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

 PATTERN_TYPE_APACHE_ANT

 /**=httpSessionContextIntegrationFilter, authenticationProcess-

ingFilter, anonymousProcessingFilter, securityEnforcementFilter

 </value>

 </property>

 </bean>

 <!-- The first item in the Chain: httpSessionContextIntegra-

tionFilter -->

 <bean id=”httpSessionContextIntegrationFilter” class=”net.

sf.acegisecurity.context.HttpSessionContextIntegrationFilter”>

 <property name=”context”>

 <value>net.sf.acegisecurity.context.security.

SecureContextImpl</value>

 </property>

 </bean>

 <!-- the second item in the chain: authenticationProcessingFilter

-->

 <bean id=”authenticationProcessingFilter” class=”net.

sf.acegisecurity.ui.webapp.AuthenticationProcessingFilter”>

 <property name=”authenticationManager”><ref bean=”authenticati

onManager”/></property>

 <property name=”authenticationFailureUrl”><value>/acegilogin.

jsp?login_error=1</value></property>

 <property name=”defaultTargetUrl”><value>/secured/</value></

property>

 <property name=”alwaysUseDefaultTargetUrl”><value>true</

value></property>

 <property name=”filterProcessesUrl”><value>/j_acegi_security_

check</value></property>

 </bean>

 <bean id=”authenticationManager” class=”net.sf.acegisecurity.pro-

viders.ProviderManager”>

 <property name=”providers”>

 <list>

 <ref bean=”daoAuthenticationProvider”/>

 <ref local=”anonymousAuthenticationProvider”/>

 </list>

 </property>

 </bean>

 <bean id=”daoAuthenticationProvider” class=”net.sf.acegisecurity.

providers.dao.DaoAuthenticationProvider”>

 <property name=”authenticationDao”>

 <ref local=”memoryAuthenticationDao”/>

 </property>

 </bean>

 <bean id=”memoryAuthenticationDao” class=”net.sf.acegisecurity.

providers.dao.memory.InMemoryDaoImpl”>

 <property name=”userMap”>

 <value>sapient=password,ROLE_ADMIN,ROLE_USER</value>

 </property>

 </bean>

 <bean id=”anonymousAuthenticationProvider” class=”net.sf.

acegisecurity.providers.anonymous.AnonymousAuthenticationProvider”>

 <property name=”key”><value>foobar</value></property>

 </bean>

 <!-- the third item in the chain: anonymousProcessingFilter -->

 <bean id=”anonymousProcessingFilter” class=”net.sf.acegisecurity.

providers.anonymous.AnonymousProcessingFilter”>

 <property name=”key”><value>foobar</value></property>

 <property name=”userAttribute”><value>anonymousUser,ROLE_

ANONYMOUS</value></property>

 </bean>

 <!-- the fourth item in the chain: securityEnforcementFilter -->

 <bean id=”securityEnforcementFilter” class=”net.sf.acegisecurity.

intercept.web.SecurityEnforcementFilter”>

 <property name=”filterSecurityInterceptor”><ref local=”filterI

nvocationInterceptor”/></property>

 <property name=”authenticationEntryPoint”><ref local=”authenti

cationProcessingFilterEntryPoint”/></property>

 </bean>

 <bean id=”filterInvocationInterceptor” class=”net.

sf.acegisecurity.intercept.web.FilterSecurityInterceptor”>

 <property name=”authenticationManager”><ref bean=”authenticati

onManager”/></property>

 <property name=”accessDecisionManager”><ref local=”httpRequest

AccessDecisionManager”/></property>

 <property name=”objectDefinitionSource”>

 <value>

 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON

 PATTERN_TYPE_APACHE_ANT

 /acegilogin.jsp*=ROLE_ANONYMOUS,ROLE_USER,ROLE_ADMIN

 /secured*=ROLE_ADMIN

 /**=ROLE_USER

 </value>

 </property>

 </bean>

 <!-- authenticationManager defined above -->

 <bean id=”httpRequestAccessDecisionManager” class=”net.

sf.acegisecurity.vote.AffirmativeBased”>

 <property name=”allowIfAllAbstainDecisions”><value>false</

value></property>

 <property name=”decisionVoters”>

 <list>

 <ref bean=”roleVoter”/>

 </list>

 </property>

 </bean>

 <bean id=”roleVoter” class=”net.sf.acegisecurity.vote.RoleVoter”/>

 <bean id=”authenticationProcessingFilterEntryPoint” class=”net.

sf.acegisecurity.ui.webapp.AuthenticationProcessingFilterEntryPoint”>

 <property name=”loginFormUrl”><value>/acegilogin.jsp</value></

property>

 <property name=”forceHttps”><value>false</value></property>

 </bean>

 <!-- Done with the chain -->

 <!-- This bean automatically receives AuthenticationEvent mes-

sages from DaoAuthenticationProvider -->

 <bean id=”loggerListener” class=”net.sf.acegisecurity.providers.

dao.event.LoggerListener”/>

</beans>

JDJ.SYS-CON.com32 January 2006

uite a few articles have been written introducing
the new language features in JDK 1.5. In this ar-
ticle, we’re going to go a little deeper and provide
tips on how to effectively use those features.

Introduction
During the beta period for JDK 1.5, we worked on a 1.5

Java compiler for BEA’s Java IDE. As we implemented vari-
ous new features, people would begin exploiting them in
new ways, some clever, some clearly candidates for a list
of what not to do. The compiler itself used 1.5 features, so
we gained direct experience in maintaining 1.5 code as
well.
 As we mentioned, this is not an introductory article.
You should know roughly what the new features are, and
we’ll talk about some of the interesting, hopefully non-ob-
vious implications and uses. These tips are a somewhat
random collection of things we ran into, loosely grouped
by language feature.
 We’ll start with the simplest features and work our way
toward the most advanced ones. Generics is an especially
rich subject and occupies about half of this article.

For-Each Loop
 The new for-each loop provides a simple, consistent
syntax for iterating over collections and arrays. There are
just a couple of interesting items to mention.

Init Expression
 The initialization expression is evaluated only once
inside the loop. This means that you can often remove a
variable declaration. In this example, we had to create an
integer array in order to hold the results of computeNum-
bers() to prevent reevaluation of that method on each
pass through the loop. You can see the bottom code is a
little cleaner than the above, and doesn’t leak the variable
“numbers.”

Without For Each:

int sum = 0;

Integer[] numbers = computeNumbers();

for (int i=0; i < numbers.length ; i++)

 sum += numbers[i];

With:

int sum = 0;

for (int number: computeNumbers())

 sum += number;

Limitations
 Sometimes you need access to the iterator or index during
iteration. Intuitively it seems like the for-each loop should
allow this. It doesn’t. Take the following example:

for (int i=0; i < numbers.length ; i++) {

 if (i != 0) System.out.print(“,”);

 System.out.print(numbers[i]);

}

 We want to print out a comma-separated list of the values
in the array. We need to know whether we’re on the fi rst item
in order to know if we should print a comma. With for-each,
there’s no way to get at this info. We’d need to keep an index
ourselves, or a boolean indicating whether or not we’re past
the fi rst item.
 Here’s another example:

for (Iterator<Integer> it = n.iterator() ; it.hasNext() ;)

 if (it.next() < 0)

 it.remove();

 In this case, we want to remove the negative items from
a collection of integers. In order to do this, we need to call a
method on the iterator, but when using for-each, this iterator
would be hidden from us. Instead, we need to just use the
pre-1.5 method of iterating.
 Note, by the way, that Iterator is generic, so the declaration
is Iterator<Integer>. A lot of people seem to miss this and use
Iterator in its raw form.

Annotations
 Annotation processing is a very large topic. We’re not going
to cover all of the possibilities and pitfalls of it, as we’re limit-
ing our article to core language features.
 We will, however, discuss the built-in annotations and the
limitations of annotation processing in general.

Jess Garms works

at BEA Systems.

jess.garms@bea.com

by Jess Garms and Tim Hanson

Q

 Experiences with the
New 1.5 Java Language Features

Understand when and how to use them

Feature

Tim Hanson works

at BEA Systems.

tim.hanson@bea.com

33January 2006JDJ.SYS-CON.com

Suppress Warnings
 This annotation turns off compiler warnings at a class or
method level. Sometimes you know better than the compiler
that your code must use a deprecated method, or perform
some action that cannot be statically determined to be type-
safe, but in fact is.

@SuppressWarnings(“deprecation”)

public static void selfDestruct() {

 Thread.currentThread().stop();

}

 This is probably the most useful of the built-in annotations.
Unfortunately, javac doesn’t support it as of 1.5.0_03. It is sup-
ported in 1.6, however, and Sun is working on back-porting it
to 1.5.
 It is supported in Eclipse 3.1, and possibly other IDEs as
well. This allows you to keep your code entirely warning-free.
If a warning shows up when compiling, you can be certain
that you just added it – helping to keep you aware of possibly
unsafe code. With the addition of generics, this is even more
desirable.

Deprecated
 Unfortunately, this one is a little less useful. It’s meant to
replace the @deprecated javadoc tag, but since it doesn’t
have any fi elds, there’s no way to suggest to the user of a
deprecated class or method what they should be using as a
replacement. Most uses will require both the Javadoc tag
and this annotation.

Override
 This indicates that the method it annotates should
be overriding a method with the same signature in a
superclass.

@Override

public int hashCode() {

 …

}

 Take the above example – if you were to fail to capitalize
the “C” in hashCode, you wouldn’t get an error at compile
time but, at runtime, your method would not be called as you
expected. By adding the Override tag, the compiler will com-
plain if it doesn’t actually perform an override.
 This also helps in the case where the superclass changes.
If, say, a new parameter were added to this method and the
method itself renamed, the subclass will suddenly fail to com-
pile, as it no longer overrides anything in the super.

Other Annotations
 Annotations can be extremely useful in other situations
as well. They work best for frameworks like EJB and Web
services, when behavior is not directly modified but
rather enhanced, especially in the case of adding boiler-
plate code.
 Annotations cannot be used as a preprocessor. Sun’s
design specifically precludes modifying the byte code of a
class directly because of an annotation. This is so that the
results of the language can be properly understood and tools
like IDEs can perform deep code analysis and functions like
refactoring.

 Annotations are not a silver bullet. When first running
across them, people are tempted to try all sorts of tricks. Take
this next proposal we got from someone:

public class Foo {

 @Property

 private int bar;

}

 The idea here was to automatically create getter and setter
methods for the private field “bar.” Unfortunately, this is a
bad idea for two reasons: (1) it doesn’t work, and (2) it makes
this code harder to read and deal with.
 It can’t be done because as we mentioned, Sun specifically
precludes modifying the class that an annotation appears in.
 Even if it were possible, it’s not a good idea because it
makes this code harder to understand. Someone looking at
this code for the first time will have no idea that this annota-
tion creates methods. Also, if in the future you need to do
something inside one of those methods the annotation is
useless.
 In summary, don’t try to use annotations to do what regular
code would do.

Enumerations
 Enums are a lot like public static final ints that have been
used for many years as enum values. The biggest and most
obvious improvement over ints is type safety – you cannot
mistakenly use one type of enum in place of another, unlike
ints, which all look the same to the compiler. With very few
exceptions, you should replace all enum-like int constructs
with enum instances.
 Enums offer a few additional features as well. There are
two utility classes, EnumMap and EnumSet, which are imple-
mentations of standard collections optimized specifically for
enums. If you know your collection will contain only enums,
you should use these specific collections instead of HashMap
or HashSet.
 For the most part you can do a drop-in replacement of
any public static final ints in your code with enums. They’re
comparable, and can be statically imported so that references
to them look identical – even in the case of an inner class (or
inner enum). Note that when comparing enums, the order
they are declared indicates their ordinal value.

“Hidden” Static Methods
 There are two static methods that appear on all enum
declarations that you write. They don’t appear in the javadoc
for java.lang.Enum, as they are static methods on enum sub-
classes, not on Enum itself.
 The first, values(), returns an array of all of the possible
values for an enum.
 The second, valueOf(), returns an enum for the provided
string, which must match the source code declaration
exactly.

Methods
 This is one of our favorite aspects of enums: they can have
methods. In the past you might have some code that per-
formed a switch on a public static final int in order to trans-
late from a database type into a JDBC URL. Now, you can have

 Experiences with the
New 1.5 Java Language Features

JDJ.SYS-CON.com34 January 2006

a method directly on the enum itself, which can clean up
code dramatically. Here’s an example of how this is done,
with an abstract method on the DatabaseType enum and
implementations provided in each enum instance:

public enum DatabaseType {

 ORACLE {

 public String getJdbcUrl() {…}

 },

 MYSQL {

 public String getJdbcUrl() {…}

 };

 public abstract String getJdbcUrl();

}

 Now your enum can provide its utility method directly.
For instance:

DatabaseType dbType = …;

String jdbcURL = dbType.getJdbcUrl();

 Previously you would have had to know where the utility
method was for getting the url.

Varargs
 Varargs can really clean up some ugly code, when used
correctly. Here’s the canonical example: a log method that
takes a variable number of string arguments.

Log.log(String code)

Log.log(String code, String arg)

Log.log(String code, String arg1, String arg2)

Log.log(String code, String[] args)

 The interesting item to discuss about varags is the com-
patibility if you replace the first four examples with a new,
vararged one:

Log.log(String code, String… args)

 All of them are source compatible. That is, if you recom-
pile all callers of the log() method, you can just replace
all four methods directly. If, however, you need backward
binary compatibility, you’ll need to leave in the first three.
Only the final method, taking an array of strings, is equiva-
lent to, and thus can be replaced by, the vararged version.

Casting
 You should avoid casting with varargs in cases where you
simply expect the caller to know what the types should be.
Take this example, where the first item is expected to be a
string, and the second an exception:

Log.log(Object… objects) {

 String message = (String)objects[0];

 if (objects.length > 1) {

 Exception e = (Exception)objects[1];

 // Do something with the exception

 }

}

 Instead, your method signature should be like the fol-
lowing, with the string and exception declared separately
from the vararg parameter:

Log.log(String message, Exception e, Object… objects) {…}

 Don’t try to be too clever. Don’t use varargs to subvert
the type system. If you need strong typing, use it. Print-
Stream.printf() is one interesting exception to this rule: it
provides type information as its first argument so that it
can accept those types later.

Covariant Returns
 The primary use of covariant returns is to avoid casts
when an implementation’s return type is known to be more
specific than the API’s. In this example, we’ve got a Zoo in-
terface that returns an Animal object. Our implementation
returns an AnimalImpl object, but before JDK 1.5 it had to
be declared to return an Animal object:

public interface Zoo {

 public Animal getAnimal();

}

public class ZooImpl implements Zoo {

 public Animal getAnimal(){

 return new AnimalImpl();

 }

}

 The use of covariant returns replaces three anti-patterns:
1. Direct field access. In order to get around the API restric-

tion, some implementations would expose the subclass
directly as a field:

 ZooImpl._animal

2. An additional form was to perform the downcast in the
caller, knowing that the implementation was really this
specific subclass:

 ((AnimalImpl)ZooImpl.getAnimal()).implMethod();

3. The last form I’ve seen is a special method that avoids the
problem by coming up with a different signature entirely:

 ZooImpl._getAnimal();

 All of these have their problems and limitations. Either
they’re ugly or expose implementation details that should not
be necessary.

With Covariance
 The covariant return pattern is cleaner, safer, and easier
to maintain. No casts or special methods or fields are
required:

public AnimalImpl getAnimal(){

 return new AnimalImpl();

}

Feature

JDJ.SYS-CON.com36 January 2006

Feature

 Using the result:

ZooImpl.getAnimal().implMethod();

Generics
 Generics is split into using generics and writing gener-
ics. These include both generic types and methods. We’re
not going to talk about the obvious use of List, Set, and
Map. Suffice it to say that generic collections are great and
should always be used.
 We are going to cover using generic methods and how the
compiler infers the types. Usually this will just work for you,
but when it doesn’t the error messages are fairly inscrutable
and you will need to know how to fix the problem.

Generic Methods
 In addition to generic types, 1.5 introduced generic
methods. In this example from java.util.Collections, a
singleton list is constructed. The element type of the new list
is inferred based on the type of the object passed into the
method:

static <T> List<T> Collections.singletonList(T o)

 Example usage:

public List<Integer> getListOfOne() {

 return Collections.singletonList(1);

}

 In the example usage, we pass in an int. The return type
of the method is then List<Integer>. The compiler infers
Integer for T. This is different from generic types because
you don’t generally need to explicitly specify the type
argument.
 This also shows interaction of autoboxing with generics.
Type arguments must be reference types, that’s why we get
List<Integer> and not List<int>.

Generic Methods Without Parameters
 The emptyList() method was introduced with generics
as a type-safe replacement for the EMPTY_LIST field:

static <T> List<T> Collections.emptyList()

 Example usage:

public List<Integer> getNoIntegers() {

 return Collections.emptyList();

}

 Unlike the previous example, this one has no parameters,
so how does the compiler infer the type for T? Basically, it
will try once using the parameters. If that does nothing, it
tries again using the return or assignment type. In this case,
we are returning List<Integer>, so T is inferred to be Integer.
 What if you are invoking a generic method in a place
other than in a return statement or assignment statement?
Then the compiler is unable to do the second pass of type

inferencing. In this example, emptyList() is invoked from
within the conditional operator:

public List<Integer> getNoIntegers() {

 return x ? Collections.emptyList() : null;

}

 The compiler cannot see the return context, and cannot
infer T, so it would give up and assume Object. You would
see an error message like “cannot convert List<Object> to
List<Integer>”.
 To fix this, you explicitly pass the type argument to the
method invocation. Then the compiler won’t try to infer
the type arguments for you, and you get the right result:

return x ? Collections.<Integer>emptyList():null;

 The other place where this will happen frequently is in
method invocation. If a method takes a List<String> and
you try to call this passing emptyList() for that param, you
would also need to use this syntax.

Beyond Collections
 Here are three examples of generic types that are not
collections that use generics in a novel way. All of these
come from the standard Java libraries.
• Class<T>: Class is parameterized on the type of the

class. This make it possible to construct a newInstance
without casting.

• Comparable<T>: Comparable is parameterized by the
actual comparison type. This provides stronger typing
on compareTo() invocations. For example, String imple-
ments Comparable<String>. Invoking compareTo() on
anything other than a String will fail at compile time.

• Enum<E extends Enum<E>>: Enum is parameterized
by the enum type. An enum called Color would extend
Enum<Color>. The getDeclaringClass returns the class
object for the enum type. It’s different from getClass(),
which may return an anonymous class.

Wildcards
 The most complex part of generics is understanding
wildcards. We’ll cover the three types of wildcards and why
you might want to use them.
 First let’s look at how arrays work. You can assign a Num-
ber[] from an Integer[]. If you attempt to write a Float into
the Number[], it will compile but fail at runtime with an
ArrayStoreException:

Integer[] ia = new Integer[5];

Number[] na = ia;

na[0] = 0.5; // compiles, but fails at runtime

 If we try to translate that example directly into generics, it
fails at compile time because the assignment isn’t allowed:

List<Integer> iList = new ArrayList<Integer>();

List<Number> nList = iList; // not allowed

nList.add(0.5);

�
��

��
��
��
��

��
��

��
��
��
��

��
��
��
��

��
��
��

���
���

��
���

��
��
��

��
���

��
��

��
��
��
��

��
��

��
��

���
��

��
��
��
��
���

��
��
��
��

���
��

��
��
��

��
���

��
��
��

���
��
��

��
��
���

��
��

���
��

�
��

��
��
��

��
��
��

��
��
��

��
��
��
���

��
��
��

��
��
��
���
��

���
��
��

��
���

��
��

��
��
�

���
���������������������������������������

��������������������

���������������������������������� �����
����� ����� ����� ������������ ��� �����
�������� �� ������� ���� ����� �� ������ �������
���� ���� ��� ���� ���� ���� ��� �������� ����
�������������������������������������

��
����������� ���������� ��������� �����������
���� ��� ����� ��������� ������������� ������
���� ��������� �� �������� ����������������
�����������������������������

���� ���� ��������� ���� ������� ���� ����
������ ���� ����������������� ����������
����������������������������������
�
��������� �� ������ ������ ����������� �����
��� �������� ��� ��������������������� � ���
��������������������

���

��

���

���

��
����� ������ �������� ��� �������� ��� ������ ������� ����������
���
���
�����������������������������
���

��
������� ������� ����� ��� ��������� ����� ��������� �����������
�������������������������������
���
�������� ���� ���������� ����������� ������� ���� ��� ������
���

��
��
�������������
������� ����������� ���� ����������� ����� ���������� �������
��
������� �������� ����� �� ������� ��������� ����� �� �������� ��� ��������
��

������� �

���
��
���������������� ����� ��������� �������� ������� ���� ��� ���������
��������� ����������������� ����� ������ � ������� ����������� ������
�����������������������������������
�������� ��������� ���� ���� ��������� ������������ ����� ���������
��������������������� ��www.jinfonet.com/jp12.htm

or call (301) 838-5560.

JDJ.SYS-CON.com38 January 2006

 With generics, you will never get runtime ClassCast-
Exceptions as long as you have code that compiles with-
out warnings.

Upper Bounded Wildcards
 What we want is a list whose exact element type is unknown.
• A List<Number> is a list whose element type is the concrete

type Number – exactly.
• A List<? extends Number> is a list whose exact element type

is unknown. It is Number or a subtype.

Upper Bounds
 If we update our original example, and assign to a List<?
extends Number>, the assignment now succeeds:

List<Integer> iList = new ArrayList<Integer>();

List<? extends Number> nList = iList;

Number n = nList.get(0);

nList.add(0.5); // Not allowed

 We can get Numbers out of the list because no matter
what the exact element type of the list is (Float, Integer, or
Number), we can still assign it to Number.
 We still can’t insert floats into the list. This fails at compile
time because we can’t prove that this is safe. If we were to
add a float into the list, it would violate the original type
safety of iList – that it stores only Integers.
 Wildcards give us more expressive power than is possible
with arrays.

Why Use Wildcards
 In this example, a wildcard is used to hide type informa-
tion from the user of the API. Internally, the set is stored as
CustomerImpl. To the user of the API, all they know is that they
are getting a set from which they can read customers.
 Wildcards are necessary here because you can’t assign
from a Set<CustomerImpl> to a Set<Customer>.

public class CustomerFactory {

 private Set<CustomerImpl> _customers;

 public Set<? extends Customer> getCustomers() {

 return _customers;

 }

}

Wildcards and Covariant Returns
 Another common use for wildcards is with covariant
returns. The same rules apply to covariant returns as as-
signment. If you want to return a more specific generic type
in an overridden method, the declaring method must use
wildcards:

public interface NumberGenerator {

 public List<? extends Number> generate();

}

public class FibonacciGenerator extends NumberGenerator {

 public List<Integer> generate() {

 …

 }

}

 If this were to use arrays, the interface could return Num-
ber[] and the implementation could return Integer[].

Lower Bounds
 We’ve talked mostly about upper bounded wildcards.
There is also a lower bounded wildcard. A List<? super
Number> is a list whose exact “element type” is unknown,
but it is number or a super type of number. So it could be a
List<Number> or a List<Object>.
 Lower bounded wildcards are not nearly as common as
upper bounded wildcards. But when you need them, they
are essential.

Lower vs Upper Bounds

List<? extends Number> readList = new ArrayList<Integer>();

Number n = readList.get(0);

List<? super Number> writeList = new ArrayList<Object>();

writeList.add(new Integer(5));

 The first list is a list that you can read numbers from.
 The second list is a list that you can write numbers to.

Unbounded Wildcard
 Finally, the List<?> is a list of anything. Almost the same
as List<? Extends Object>. You can always read Objects, but
you cannot write to the list.

Wildcards in Public APIs
 To summarize, wildcards are great for hiding imple-
mentation details from callers as we saw a few slides
back, but even though lower bounded wildcards appear
to provide read-only access, they do not due to non-
generic methods like remove(int position). If you want
a truly immutable collection, use the unmodifiableCollec-
tion(), etc.
 Be aware of wildcards when writing APIs. In general, you
should try to use wildcards when passing generic types. It
makes the API accessible to a wider range of callers.
 In this example, by accepting a List<? extends Number>
instead of List<Number>, the method can be called by
many different types of lists:

void removeNegatives(List<? extends Number> list);

Constructing Generic Types
 Now we’ll cover constructing your own generic types. I’ll
show example idioms where type safety can be improved
by using generics, as well as common problems that occur
when trying to implement generic types.

Collection-Like Functions
 This first example of a generic class is a collection-like ex-

Feature

39January 2006JDJ.SYS-CON.com

ample. Pair has two type parameters, and the fields are instances
of the types:

public final class Pair<A,B> {

 public final A first;

 public final B second;

 public Pair(A first, B second) {

 this.first = first;

 this.second = second;

 }

}

 This makes it possible to return two items from a method
without having to write special-purpose classes for each two-type
combo. The other thing you could have done is return Object[],
which isn’t type-safe or pretty.
 In the usage here, we return a File and a Boolean from a method.
The client of the method can use the fields directly without casting:

public Pair<File,Boolean> getFileAndWriteStatus(String path){

 // create file and status

 return new Pair<File,Boolean>(file, status);

}

Pair<File,Boolean> result = getFileAndWriteStatus(“…”);

File f = result.first;

boolean writeable = result.second;

Beyond Collections
 Here is an example where generics are used for additional
compile-time safety. By parameterizing the DBFactory class by
the type of Peer it creates, you are forcing Factories to return a
specific subtype of Peer:

public abstract class DBFactory<T extends DBPeer> {

 protected abstract T createEmptyPeer();

 public List<T> get(String constraint) {

 List<T> peers = new ArrayList<T>();

 // database magic

 return peers;

 }

}

 By implementing DBFactory<Customer>, the CustomerFac-
tory is forced to return a Customer from createEmptyPeer:

public class CustomerFactory extends DBFactory<Customer>{

 public Customer createEmptyPeer() {

 return new Customer();

 }

}

Generic Methods
 Whenever you want to place constraints on a generic type be-
tween parameters or a parameter and a return type, you probably
want to use a generic method.

 For example, if you write a reverse function that reverses in
place, you don’t need a generic method. However, if you want
reverse to return a new list, you’d like the element type of the new
list to be the same as the list that was passed in. In that case, you
need a generic method:

<T> List<T> reverse(List<T> list)

Reification
 When implementing a generic class, you may want to con-
struct an array, T[]. Because generics is implemented by erasure,
this is not allowed.
 You might try to cast an Object[] to T[]. This is not safe.

Reification – Solution
 The solution, courtesy of the generics tutorial, is to use a “Type
Token”. By adding a Class<T> parameter to the constructor,
you force clients to supply the correct class Object for the type
parameter of the class:

public class ArrayExample<T> {

 private Class<T> clazz;

 public ArrayExample(Class<T> clazz) {

 this.clazz = clazz;

 }

 public T[] getArray(int size) {

 return (T[])Array.newInstance(clazz, size);

 }

}

 To construct an ArrayExample<String>, the client would have
to pass String.class to the constructor because the type of String.
class is Class<String>.
 Having the class objects makes it possible then to construct an
array with exactly the right element type.

Migrating to Generics
 Finally, we’ll just briefly talk about migrating 1.4 code to using
Generics:
• You can generify existing classes and interfaces.
• You can convert raw collection uses to generic collections,

even in public methods. This will not break clients who
override.

• If you need to pass a collection to a 1.4-level library, you can
use checked collections. These will fail fast if that library
attempts to put something in a collection that shouldn’t
belong. This is an interesting example of the “Type Token”
pattern we mentioned.

• In general, if you want to know if something is safe, look
at the standard libraries. There are plenty of examples of
migrating classes while maintaining source and binary
 compatibility.

Conclusion
 In summary, the new language features make for a substantial
change to Java. By understanding when and how to use them,
you’ll write better code.

JDJ.SYS-CON.com40 January 2006

proxy cache is a behavioral
technique that provides the abil-
ity to cache a result-set (output)
from a service call via a proxy

using the argument-set (input) as the
cache key. Through this proxy, all calls to
any concrete instances of a defined type,
service, are made. In this proxy, input is
used as the key to obtain from or provide
to a cache the output from a called service.
If output has already been cached for a
given input, the proxy returns the cached
output without forwarding the call to the
actual service.
 This article presents a software design
approach that will allow you to add a trans-
parent caching layer to your applications.
This approach will work for all types of ap-
plications (middle-tier, client-side, batch,
etc.) under many scenarios (Web services,
database access, etc.).
 Although this article does refer to cach-
ing, it’s not about caching. Instead, this
article attempts to provide a description of
how to incorporate a feature, such as cach-
ing, modularly and without major impact
to existing code.
 Provided first is a description of how my
colleagues and I ended up at a proxy cache
and is followed by a generic summary of
how to design and implement a proxy
cache solution.

Background
 While working with several colleagues
on a recent project, we decided to avoid any
performance problems that were caused by
repeatedly retrieving data from our back-
end data store and from the performance
problems related to object creation when
generating responses from the services in
our service layer. To accomplish this, we
needed to incorporate a cache mechanism
into that service layer.
 The service layer was fairly simple in that
most of the services were read-only with
some basic business logic applied behind
the scenes. We were not using any object/
relational (O/R) mapping tools, just basic
Data Access Objects (DAOs) and, therefore,
several ideas were tossed around.

 One idea was to simply use an O/R tool.
Any good O/R tool would include a caching
mechanism to avoid hitting the database
unnecessarily. However, we decided
against this for a couple of reasons:
• Previous and bad experiences with a

commercial O/R tool specifically related
to caching and synchronization.

• A motivating drive to keep things as
simple as can be, but no simpler.

• It did not solve the problem related to
object creation.

 Another idea was to utilize a third-party
caching solution. Although there are many
to choose from, they did not address all of
our software design concerns. We therefore
realized that we needed to define some
objectives for our caching system. These
objectives are defined below:
• The caching system should be transpar-

ent to the user and the used.
• The caching system should eliminate

the sprinkling of cache code throughout
the code base, i.e., to implement cach-
ing in a single place so as not to violate
the Single Responsibility Principle (SRP)
and Once And Only Once (OAOO) con-
cept.

 In addition, many of the third-party
systems were fairly heavyweight, requiring
more configuration than we desired and a
fair amount of physical space for the library
or libraries. We were not strictly opposed to
using these tools, but we needed something
else first.
 Another viable option for us was to
introduce caching code into each service,
but this was not suitable either as it

violated some of our principles. The SRP
was violated when the service would have
been responsible for its normal, expected
behavior and also caching.
 OAOO was violated when we would
have had to introduce the same code into
each service. We could have abstracted the
behavior into a base class or supporting
utility class, but SRP would still have been
violated, so why bother.

Proxy Cache
 After some consideration, we realized
that we were saying we wanted an aspect of
caching applied to each of our services. The
role of this aspect would be to (1) check a
cache to determine if the service had already
been called with the provided input and if
so, would (2) return the cached output or
else it would (3) complete the call and then
cache the output.
 Java does not have extensive built-in sup-
port for Aspect-Oriented Programming, and
we did not want to introduce an AOP exten-
sion such as AspectJ. However, Java does
provide built-in support for proxies via the
dynamic proxy class (proxy class), provided
by the standard Java platform since JDK1.3.
A proxy class could be used to encapsulate
our needed behavior without violating our
core principles and making us feel all “dirty.”
From this idea was born our concept of a
proxy cache.
 Note: The choice to not use an O/R map-
ping tool does not negate using one in the fu-
ture. You could potentially use a proxy cache
and an O/R mapping tool concurrently.

Dynamic Proxy
 At the heart of the proxy cache technique
is the Proxy pattern. If you are not familiar
with what the Proxy Pattern is, the accepted
definition is that a proxy “[provides] a sur-
rogate or placeholder for another object to
control access to it.” The goal of the proxy
cache is to be a surrogate to the service, but
with a small caveat that it must also be able to
present itself as the actual service, such that
the caller of the service cannot differentiate
the two. The proxy cache for a given service
must be able to stand-in for the service itself.

Caching

by Justin Knowlden
Proxy Cache

A

Justin Knowlden is a

solutions architect

with United Airlines.

Prior to United, he

helped develop the

MyPoints.com product

from its inception.

Justin is actively

participating in the

open source community

(see Helium and ESP).

When not programming

he is a husband, a

basketball and football

coach for his son, and

an environmental and

animal rights activist.

justin.knowlden@united.com

A practical implementation

41January 2006JDJ.SYS-CON.com

 In Java, there are obviously many ways that a proxy can be
implemented, but this article will utilize the well-established
proxy class, java.lang.reflect.Proxy. Using a proxy class will allow
the proxy cache to disguise itself as the service without imple-
menting any user-defined interfaces.
 The basic protocol for using the proxy class is as follows:
1. Provide an implementation of java.lang.reflect.

InvocationHandler.
2. Generate a new proxy instance by providing a classloader, an

array of interfaces the proxy shall implement, and an instance
of your invocation handler.

3. Cast the proxy object to a type consistent with the interfaces
you provided when generating the proxy.

 Below is an example of the implementation of this protocol:

InvocationHandler handler =

 new FooInvocationHandler(new Bar());

Foo f = (Foo) Proxy.newProxyInstance(

 Foo.class.getClassLoader(),

 new Class[]{ Foo.class }, handler);

 In your invocation handler you are required to implement an
invoke() method that must accept the proxy instance, a refer-
ence to the method that is being called on that instance, and any
arguments that are being passed to that instance. In this invoke()
method you can provide an epilogue and/or prologue to the
actual method call; i.e., you can “wrap” the intended method call
with your own custom behavior.
 The invocation handler must also have access to a concrete
instance of the desired object. This is perhaps the trickiest aspect
of the proxy class framework as it requires a priori knowledge
of the caller’s intentions or a very specific implementation of an
invocation handler. In the case of the proxy cache, the most useful
implementation is to pass the concrete object as an argument to
the constructor of the invocation handler. This, however, implies a
bijectional relationship between the proxy and the proxied object,
which may only be bad if there is an explosion of objects needing
a proxy.

Implementing a Proxy Cache
 In general, we would like to limit the number of places where
proxy cache is actually referenced; therefore, the most basic
way to implement proxy cache is through a factory or builder. A
factory is used to isolate the details of generating a new service.
Isolating these details is important because our ServiceFactory
will be responsible for generating concrete service instances, gen-
erating invocation handler (CacheProxy) instances for services,
and returning proxies to the services.
 Shown in Figure 1 is a simple entity relationship diagram of the
framework that will be implemented. Generally, you will already
have everything shown in the diagram well established in your
system except for CacheProxy. Why? Because you’re not going
to introduce a proxy cache until you actually need it. Introduce
caching only when you know there is a problem. In Figure 1, all
interfaces are illustrated as a rounded-rectangle.
 As is shown, the Service interface knows only about itself:

package service;

public interface Service {

 public Object service(

 Object toService);

}

 The CacheProxy class knows about the service and is an
implementation of the InvocationHandler interface. Finally, the
ServiceFactory knows about everything service related (includ-
ing the Concrete Service, albeit implicitly).
 Where does the caching behavior go? The responsibility of
caching firmly belongs to CacheProxy. But, how is the CacheProxy
created so that it may enable caching? Normally, the Service-
Factory would create a Concrete Service and basically return it.
When utilizing proxy cache, ServiceFactory will still create the
Concrete Service instance, but will pass that instance to a new
instance CacheProxy and return the CacheProxy instance instead.
Therefore, whenever a method is called on the service (even those

 Figure 1 Entity diagram of the service framework

ServiceFactory

CacheProxy Invocation
Handler

Service
Concrete
Service

JDJ.SYS-CON.com42 January 2006

not defined in the service interface), the call
will be trapped by the CacheProxy, wherein
a cache can be investigated prior to passing
the call on to the Concrete Service.
 In order to implement the rest of the
framework we will need to start with a very
simple concrete service, which we will call
EchoService. The EchoService implements
the service interface and simply returns the
request object as the response object; or,
EchoService echoes the input as its output.
This simple construct will help illustrate
caching functionality when we actually
implement it.

package service;

public class EchoService

implements Service {

 public Object service(

 Object toService) {

 return toService;

 }

}

 Listing 1 shows the implementation of
a ServiceFactory that only knows how to
create an EchoService. In the method new-
EchoService(), notice that even though a new
EchoService instance is created, it is wrapped
in a new CacheProxy instance and returned
as a dynamic proxy. While the reflection
taking place here might appear to be a heavy
process, it is essentially a one-time hit be-
cause the Proxy class internally caches Proxy
class definitions given the particular set of
arguments to Proxy.newProxyInstance(). We
could also create the Proxy class ahead of
time since we expect to only return objects of
type service, but the code is left this way for
the sake of brevity; therefore, it is up to you to
refactor this code.

 Listing 2 shows our Proxy Cache imple-
mentation, aptly named CacheProxy. Even
though CacheProxy is an implementation
of an InvocationHandler, the suffix –Proxy is
left in to illustrate that CacheProxy contains
our actual proxy code.
 Notice that our CacheProxy is somewhat
light in terms of desired functionality. In fact,
it’s quite useless. If we were to throw this
code into production, EchoService would
return the request object each and every
time. From a black-box perspective, we actu-
ally desire that the same output be provided
for a given input. However, if we can imagine
that EchoService is actually a fairly complex
service that performs several time-consum-
ing operations on its input, we quickly realize
that it would be better to just return a cached
response ahead of time without enduring the
performance hit.

Refactoring the Proxy Cache
 There are many ways to incorporate a
caching mechanism into our CacheProxy
class. The most basic approach is to use a
java.util.Map, more specifically, a HashMap.
This solution sounds simple, but the problem
with this approach is made visible in this
way: if we initialize the Map instance directly
in the CacheProxy, the Map will only survive
for as long as the CacheProxy instance does.
Because the ServiceFactory creates new
CacheProxy instances every time a service
is requested, we will, in effect, never cache
anything.
 We don’t want to inject the Map into
CacheProxy because only the CacheProxy
should care about the Map. Therefore, a
suitable solution to this problem is to have
the ServiceFactory manage the instances of
proxies that it creates. There are, however,
several side-effects to this approach. For
starters, the ServiceFactory is now acting
more like a resource manager than a factory.
Although we would normally rename Ser-
viceFactory to something like ServiceMan-
ager, at this point, we opt to leave the name
as is for the rest of this article.
 Second, each CacheProxy instance is
a kind of pseudo-singleton. For example,
there will be only one EchoService proxy
instance per instance of the ServiceFactory.
These proxies are only pseudo-singletons
because the ServiceFactory is not itself a
singleton; meaning, each instance of Ser-
viceFactory will create its own CacheProxy
instances. Or better yet, assuming we will
only create one ServiceFactory instance per
virtual machine, we have what Uncle Bob
(Bob Martin) would call “Just Create One,”

making ServiceFactory a glorified Singulizer.
 To ensure one instance of a service per
virtual machine, we privately define a class
instance variable named echoService and
lazily initialize it at runtime. The following
code snippet can be applied to Service-
Factory to enable lazy-initialization of an
EchoService instance:

...

private Service echoService;

public synchronized Service newEchoService() {

 if (echoService == null)

 echoService = //create EchoService proxy

 return echoService;

}

...

 We had to synchronize newEchoService()
to ensure that only one instance is ever
created lazily for the specific ServiceFactory
instance. If newEchoService() is not syn-
chronized in any way, a race condition could
exist whereby multiple, simultaneous calls to
newEchoService() would produce multiple
EchoService instances, thereby reduc-
ing the probability of generating a unique
cache. This race condition only exists when
EchoService is being lazily instantiated.
 In addition, if ServiceFactory were to
manage more service initializations, we
would need a class instance variable per
factory method.
 Is the Map problem solved? No; how
will CacheProxy use the Map? If we want
CacheProxy to return the same output for
a given input, we should use the argument
array provided to invoke() as a key and the
response from the call to the real service as
the value. Thus, whenever the same input is
provided, assuming immutable types or the
exact same object instances are being passed,
we can retrieve the corresponding output
from the Map.
 That sounds great too, but Cache-Proxy’s
generic behavior elicits yet another prob-
lem. What happens when two methods of a
service (or any object being proxied) share
the same method signature? In this case,
a call to one method may actually return
a previously cached response of another
method. The quick-and-easy solution is
to keep a cache for each method, which is
very feasible considering that the invoke()
method provides us with an instance of
the Method object that was being called.
But, this enhancement creates another
headache for us because we need to store
the mapping of methods to their caches.
 Assuming we have incorporated the

Caching

 Figure 2 Final entity relationship diagram

ServiceFactory

Cache

CacheProxy

Service

SimpleCache

Invocation
Handler

Concrete
Service

43January 2006JDJ.SYS-CON.com

enhancement, we now have a two-level caching scheme using
Maps. Are we ready to go yet? In theory, yes, but there is one
more item we should address. Because we don’t need all of the
functionality provided by a Map and we really just want to deal
with a cache, we should define a cache type.

package service;

public interface Cache {

 public Object retrieve(

 Object key);

 public void store(

 Object key, Object value);

}

 In our cache, the only behavior we are concerned with is the
ability to store and retrieve values via their keys. In addition,
if we need any other special behavior for our cache(s), we can
implement that behavior in cache, the proper place, and not
make CacheProxy responsible for it. Once cache is defined, we
can implement a SimpleCache that uses HashMap internally
(see Listing 3).
 From an object-oriented perspective, realizing the cache
type is actually very important. Earlier in this article I stated
that CacheProxy is responsible for all caching behavior, which
is true, but only to a point. The cache type highlights where
the statement breaks down. If we leave all caching behavior in
CacheProxy, CacheProxy is then responsible for the investigat-

ing the cache and possibly calling the real service (proxy behav-
ior) and managing the actual cache. To keep things simple, we
only really want CacheProxy to be responsible for one of those
two, therefore, cache is responsible for managing the cache and
CacheProxy only needs to know what cache provides.
 Now are we ready to move on? Quite so! We finally move on
to adding cache behavior to CacheProxy (see Listing 4). The new
version of CacheProxy is slightly longer, but not much more.
There is also some duplication in the invoke() and findMethod-
Cache() methods related to storing values when a retrieved
value is null, but, we’ll leave this refactoring for another day.
 At the heart of CacheProxy is the invoke() method. In the
invoke() method a specific protocol is followed. First, the cache
for the method being called is identified and retrieved. This
functionality is mostly implemented in the findMethodCache()
method, wherein, a new cache instance is created if no cache
instance has yet been created for the particular method. Thus,
the method instance is itself the key to a cache.
 Once the method’s cache has been identified, another key
is created from the array of arguments that is to eventually be
passed to the targeted method. This key is generated via the
generateArgumentKey() method. After creating this composite
key, the key is used to find any previously cached value from
the method’s cache retrieved earlier. If no value was previ-
ously cached, the proxied object’s method is called reflectively
(identified by the Method object) and the results of that call
are cached. Finally, the cached results are returned back to the

JDJ.SYS-CON.com44 January 2006

original caller.
 It is important to note what is going on
in the generateArgumentKey() method.
Superficially, the array of arguments is be-
ing morphed into a list of arguments (java.
util.List). If the array of arguments is null, a
predefined NullKey is used as the new key.
But why convert the array to a list? Lists
that extend AbstractList have a unique
feature in that the hash-code is generated
based on the set of elements in the list,
such that two distinct lists containing the
exact same elements will produce the exact
same hash-code.
 On the other hand, two arrays of argu-
ments containing the same elements will
produce two distinct hash-codes, inhibit-
ing us from being able to retrieve a cached
value given the same set of arguments. In
addition, if we were to simply use the ob-
ject array provided to the invoke() method
as the key, we would have an ever-growing
cache that never finds anything we are
looking for.
 It could also be argued that because the
hash-code issue is cache related, the job
of converting the array to a list belongs to
cache. It could be argued, but, the reality
is that CacheProxy is actually concerned
about presenting identical keys, not cache.
Therefore, CacheProxy is responsible for
the conversion.
 Currently, java.util.Arrays.asList()
creates a list that is an extension of Ab-
stractList. If at some point it does not, you
could simply create the list yourself (e.g.,
java.util.ArrayList) and copy the element
references from the array.

Applying Advanced Cache Techniques
 So far, a very simple cache replace-
ment mechanism has been assumed, as
in, cache-forever. But, to realize the full
potential of proxy cache we want the data
in the cache to be replaced, or at least
purged, after some period of time.
 Replacement is generally triggered via
some event that is either bound temporar-
ily or spatially. Meaning, either a prede-
termined amount of time has passed or
a preallocated size boundary has been
exceeded. Some of the most common
techniques applied are: time-to-live (TTL),
least-recently used (LRU), and least-fre-
quently-used (LFU). It is out of the scope of
this article to describe what each of these
algorithms means, although, you can prob-
ably guess from their names.
 However, if we wanted to apply one of
these algorithms, we could simply imple-

ment another type of cache. For instance,
if we wanted to utilize a TTL cache for all
of our services that would remove expired
entries after 10 minutes (600 seconds), the
shell of a TimeToLiveCache would look
similar to that shown in Listing 5.
 Remember that the proxy cache
technique works especially well when
the output of a given operation can be
guaranteed to be the same for every call to
a service or set of services given some pre-
determined temporal or spatial boundary.
Therefore, whatever solution you use,
make sure that it does not negate the posi-
tive aspects of actually using a cache.

Unit Testing a Proxy Cache
 Unit testing is an essential practice in
the development of all software, no matter
the size or complexity.
 All code provided here was developed
using the Test-Driven Development meth-
odology (TDD), with the exception of the
TimeToLiveCache since there is no real
implementation provided. All test cases
and their supporting test code have been
provided in Listing 6. (Listing 6 and ad-
ditional source code can be downloaded
from http://jdj.sys-con.com.)
 In the test code you’ll find only five test
cases asserting that:
1. EchoService returns the same object

that was provided to it.
2. ServiceFactory returns only one

instance of a proxy per service.
3. CacheProxy actually caches.
4. CacheProxy can handle a null reference

as the set of arguments.
5. CacheProxy differentiates its caches by

method name.

 For a few of the tests a mock object
is used in place of a “real” service that
would normally be passed to CacheProxy.
Using this mock object allows us to
isolate CacheProxy in our tests because,
hopefully, the mock object contains very
little behavior. Most mock objects should
contain only enough logic to record events
for investigation later.
 There could be one or two tests missing
from the provided test cases and there
is certainly some duplication in the test
code, but, for the most part, the tests
provided are enough to cover most basic
implementations of proxy cache. In addi-
tion, if you are not already practicing the
TDD methodology, the examples provided
can provide you with more proof of why
it is so invaluable. If for no other reason,

TDD was invaluable in developing the
proxy cache because we didn’t have to
guess at how we should actually imple-
ment the framework.

History
 At its core, the proxy cache concept is
not new. The concept is borrowed from
the memoization technique (meaning “to
put in memory”), recognized by Donald
Mitchie in his paper “Memo functions and
machine learning” from a Nature maga-
zine published in 1968.
 The proxy cache is an abstraction of the
memoization technique and differs from
memoization by assuming that the data
is likely to change, whereas memoization
relies on the data not changing.

Conclusion
 The design and implementation of the
proxy cache approach provided in this
article is simplistic. In the solution my
colleagues and I eventually put together,
we introduced a synchronization scenario
so that all caches running in our applica-
tion servers could purge themselves when
necessary. There is no theoretical limit to
what can be introduced into this layer.
 In most instances, however, an imple-
mentation of the proxy cache that utilizes
a basic replacement algorithm should
be enough to satisfy any application. Re-
member that the goal of the proxy cache is
to keep your application simple, modular,
and free from responsibility creep.

References
• Portland Pattern Repository;

ProxyPattern: http://c2.com/cgi/
wiki?ProxyPattern; last updated
20050124

• Martin, B., et al; Singleton vs. Just Create
One: http://butunclebob.com/ArticleS.
UncleBob.SingletonVsJustCreateOne

• Wikipedia Users; Memoization: http://
en.wikipedia.org/wiki/Memoization;
last updated 20050708-22:55

• Bob Martin, et al; Single Responsibility
Principle, http://
www.objectmentor.com/resources/
articles/srp

Acknowledgments
 None of the information provided here
would have been possible without the
following people: Virgil Bistriceanu, Boris
Vaysburg, Aleksey Beregov, Murali Kasha-
boina, and Brett Neumeier (even though
he doesn’t know it).

Caching

45January 2006JDJ.SYS-CON.com

Listing 1: Initial ServiceFactory implementation
package service;
import java.lang.reflect.Proxy;

public class ServiceFactory {
 public Service newEchoService() {
 return (Service) Proxy.newProxyInstance(
 Service.class.getClassLoader(),
 new Class[]{Service.class},
 new CacheProxy(new EchoService()));
 }
}

Listing 2: Initial CacheProxy implementation
package service;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;

public class CacheProxy implements InvocationHandler {
 private final Object obj;
 public CacheProxy(Object toProxy) {
 this.obj = toProxy;
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 return method.invoke(obj, args);
 }
}

Listing 3: SimpleCache, HashMap implementation of a Cache
package service;
import java.util.HashMap;
import java.util.Map;

public class SimpleCache implements Cache {
 private Map values;
 public SimpleCache() {
 values = new HashMap(16);
 }

 public Object retrieve(Object key) {
 return values.get(key);
 }

 public void store(Object key, Object value) {
 values.put(key, value);
 }
}

Listing 4: Final implementation of CacheProxy
package service;
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.util.Arrays;

public class CacheProxy implements InvocationHandler {
 private static final Object NullKey = new Object();
 private final Object obj;
 private Cache caches;

 public CacheProxy(Object toProxy) {
 this.obj = toProxy;
 caches = new SimpleCache();
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 Cache cache = findMethodCache(method);
 Object key = generateArgumentKey(args);
 Object value = cache.retrieve(key);
 if (value == null)
 cache.store(key, value = method.invoke(obj, args));
 return value;
 }

 private Cache findMethodCache(Method method) {
 Cache cache = (Cache) caches.retrieve(method);
 if (cache == null)
 caches.store(method, cache = new SimpleCache());
 return cache;
 }

 private Object generateArgumentKey(Object[] args) {
 return args != null ? Arrays.asList(args) : NullKey;
 }
}

Listing 5: Time-to-live shell implementation
package service;

public class TimeToLiveCache
implements Runnable, Cache {
 private final int ttlSeconds;
 private Thread ttlThread;

 public TimeToLiveCache(int ttlSeconds) {
 this.ttlSeconds = ttlSeconds;
 ttlThread = new Thread(this);
 ttlThread.start();
 }

 public void run() {
 /* wake up and remove entries
 * every so often
 */
 }

 public Object retrieve(Object key) {
 /* basic retrieval */
 }

 public void store(Object key, Object value) {
 /* basic storage, but will also need to
 * record the time the entry was added
 */
 }
}

The World’s Leading Java Resource
Is Just a >Click< Away!

JDJ is the world’s premier independent, vendor-neutral print resource
for the ever-expanding international community of Internet

technology professionals who use Java.

or 1-888-303-5282

www.JDJ.SYS-CON.com

6999$
ONLY

ONE YEAR
12 ISSUES

Subscription Price Includes
FREE JDJ Digital Edition!

JDJ.SYS-CON.com46 January 2006

n our previous article – “Rich Internet Components with
JavaServer Faces” (JDJ, Vol. 10, issue 11) – we discussed
how JavaServer Faces can fulfi ll new presentation
requirements without sacrifi cing application developer
productivity building Rich Internet Applications (RIA). We

discussed how JSF component writers can utilize technologies,
such as AJAX and Mozilla XUL, to provide application develop-
ers with rich, interactive, and reusable components.
 To use AJAX and Mozilla XUL with JSF, component writers
have to make sure to provide any resource fi les needed by
these technologies, such as images, style sheets, or scripts. The
standard approach to providing resource fi les for a JSF compo-
nent library is to serve them directly out of the Web application
root fi le system. These resources are usually packaged in an
archive (such as a ZIP fi le) and shipped separately from the JSF
component library.
 This article introduces a new open source project – Weblets
– which can be found on the java.net Website (http://weblets.
dev.java.net). The goal of this open source project is to provide
JSF component writers with a facility that can serve resource
fi les out of a Java archive (JAR), rather than serving them from
the Web application root fi le system. Unlike traditional Web
applications, which have statically confi gured URL mappings
defi ned in web.xml, there is a need for dynamic confi guration
of URL mappings, based on the presence of a component li-
brary JAR. In essence, Weblets provide developers with an easy
way to package Web application resources in the same Java
archive (JAR) that their implementation code resides in.

Resource Loading
 Let’s assume that we have a JSF component that needs to
have a JavaScript fi le, myScript.js, served to the client. This
JavaScript fi le is used by the component to provide some
level of richness when interacted with by the end user. This
JavaScript fi le is traditionally served by the Web application
via a relative path that is hard coded into the actual Renderer
code for the JSF component. This requires the application
developer to deploy additional resources that are delivered
and packaged in a separate archive fi le, e.g., ZIP, often referred
to as “installables.”
 It is important to note that the JavaServer Faces HTML ba-
sic RenderKit does not have any images, styles, or scripts, so
there is no standard solution to the Faces resource packaging
problem.

 The following sample Renderer code illustrates the install-
ables approach to serving a JavaScript fi le, /myresources/
myScript.js, from the Web application root fi le system.

ViewHandler handler = context.getApplication().getViewHandler();

String resourceURL = handler.getResourceURL(context,“/myresources/

 myScript.js”);

out.startElement(“script”, null);

out.writeAttribute(“type”, “text/javascript”, null);

out.writeAttribute(“src”, resourceURL, null);

out.endElement(“script”);

 Although the installables approach is convenient for
the JSF component author, it does increase the installa-
tion burden on the application developer, who must remem-
ber to extract the installables archive each time the compo-
nent library is upgraded to a new version. Therefore, we
need a way to package our additional resources into the
same JAR fi le containing the Renderer classes, simplifying
deployment for application developers using our compo-
nent library.

Using Weblets
 The open source Weblets project aims to solve the re-
source-packaging problem in a generic and extensible way
so that it can be leveraged by all JavaServer Faces component
writers, while placing only a minimal installation burden on
the application developer.
 A Weblet acts as a mediator that intercepts requests from
the client and uses short Web URLs to serves resources from
a JAR fi le. Unlike the Servlet or Filter approach, a Weblet can
be registered and confi gured inside a JAR, so the compo-
nent library Renderers, their resource fi les, and the Weblet
confi guration fi le (weblets-confi g.xml) can all be packaged
together in the same JAR. The Weblet Container can be
registered just once in the Web application confi guration fi le
– web.xml – for all component libraries. There is no need to
separately deploy additional installables when the compo-
nent libraries are upgraded to new versions.
 It is important to note that all resources served up by We-
blets are internal resources, used only by the Renderer. Any
resources, like images, that are provided by the application,
are supplied as component attribute values and loaded from
the context root as external resources.

Jonas Jacobi is a technology

evangelist for Oracle’s Java/

J2EE tool offering, JDeveloper,

and over the past three years

has been responsible for

JavaServer Faces, Oracle ADF

Faces, and Oracle ADF Faces

Rich Client development

features within Oracle

JDeveloper. Jonas has been

in the software business for

15 years. Prior to joining

Oracle, he worked at several

software companies in

Europe, covering many roles

including support, consulting,

development, and project

team leadership.

jonas.jacobi@oracle.com

by Jonas Jacobi and John Fallows

I

Feature

Introducing a new open source project

Introducing a new open source project
JSF and AJAX

47January 2006JDJ.SYS-CON.com

Introducing a new open source project
JSF and AJAX

Weblet Architecture
 Although Weblets were designed to be used by any Web
client, the Weblets implementation has been integrated with Ja-
vaServer Faces using a custom ViewHandler, WebletsViewHan-
dler, as shown in Figure 1. During rendering of the main Ja-
vaServer Faces page, the WebletsViewHandler is responsible for
converting Weblet-specifi c resource URLs into the actual URLs
used by the browser to request Weblet-managed resources.
 After receiving the rendered markup for the main page, the
browser downloads each additional resource using a sepa-
rate request. Each request for a Weblet-managed resource is
intercepted by the WebletsPhaseListener, which then asks the
WebletContainer to stream the Weblet-managed resource fi le
out of the component library JAR.
 The WebletContainer is designed to leverage the browser
cache where possible. This improves overall rendering perfor-
mance by minimizing the total number of requests made for
Weblet-managed resource fi les.
 To ensure fl exibility and optimization, and avoid collisions
with existing Web application resources, Weblets can be confi g-
ured by application developers to override any default settings
provided by the component author.

Using Weblets in a Component library
 Weblets are confi gured using a weblets-confi g.xml fi le,
which must be stored in the /META-INF directory of the
component library JAR. Confi guring a Weblet is similar to
confi guring a Servlet or a Filter. Each Weblet entry in the
weblets-confi g.xml fi le has a Weblet name, implementation
class, and initialization parameters (see Listing 1). The Weblet
mapping associates a particular URL pattern with a specifi c
Weblet name, e.g., org.myapp.html. The Weblet name and
default URL pattern defi ne the public API for the Weblet-man-
aged resources and should not be modifi ed between releases
of your component library, in order to maintain backward
compatibility.
 Our component library packages resources in the org.
myapp.faces.renderer.html.resources Java package and makes
them available to the browser using the default URL mapping
of /myresources/*.
 The PackagedWeblet is a built-in Weblet implementation that
can read from a particular Java package using the ClassLoader
and stream the result back to the browser. The package initial-
ization parameter tells the PackagedWeblet which Java package
to use as a root when resolving Weblet-managed resource
requests.

Weblet Versioning
 Weblets also has built-in support for versioning of the compo-
nent library. This is used to allow the browser to cache packaged
resources such as myScript.js when possible, preventing unnec-
essary round-trips to the Web server.
 Each time the browser renders a page, it will ensure that all re-
sources used by that page are available. During the initial render-
ing of the page, the browser populates its cache with the contents
of each resource URL by downloading a fresh copy from the Web
server. As it does so, the browser records the Last-Modifi ed and Ex-
pires timestamps from the response headers. The cached content
is said to have expired if the current time is later than the expira-
tion timestamp, or if no expiration timestamp information exists.

 On the next render of the same page, the browser checks to
see if the locally cached resource has expired. The locally cached
copy is reused if it has not expired. Otherwise, a new request is
made to the Web server, including the last modifi ed informa-
tion in the If-Modifi ed-Since request header. The Web server
responds by either indicating that the browser cache is still up-
to-date, or by streaming the new resource contents back to the
browser with updated Last-Modifi ed and Expires timestamps in
the response headers.
 Weblets use versioning to leverage the browser cache behavior
so that packaged resources can be downloaded and cached as
effi ciently as possible. The browser only needs to check for new
updates when the cache has been emptied or when the compo-
nent library has been upgraded at the Web server.
 Listing 2 illustrates the Weblets versioning feature by adding a
1.0 version to our org.myapp.html Weblet.
 By specifying a Weblet version, you indicate that the pack-
aged resource is not going to change until the version number
changes. Therefore, the version number is included as part
of the resource URL determined at runtime by the Weblets-
ViewHandler, e.g., /myresources$1.0/myScript.js. When the
WebletContainer services this request, it extracts the version
number from the URL and determines that the resource should
be cached and never expire. As soon as a new version of the
component library is deployed to the Web application, the
resource URL created at runtime by the WebletsViewHandler
changes, e.g., /myresources$2.0/myScript.js, thus the browser’s
cached copy of myScript.js for version 1.0 is no longer valid
because the URL is different.
 During development, the contents of packaged resources
can change frequently, so it is important for the browser to keep
checking back with the Web server to detect the latest resource
URL contents. This check happens by default every time the
main Web page is rendered if the Weblet version is omitted from
weblets-confi g.xml.
 Alternatively the Weblet confi guration allows component
authors to append -SNAPSHOT to the version number. For
example, 1.0-SNAPSHOT, as shown in the following code, indi-
cates that this fi le is under development and should behave as
though the version number has been omitted.

John Fallows is a

consulting member of

technical staff for server

technologies at Oracle

Corporation, and has

been working in

distributed systems for

over a decade. During

the past fi ve years, he has

focused on designing,

developing, and evolving

Oracle ADF Faces, and is

now lead developer for

Oracle ADF Faces Rich Client.

john.fallows@oracle.com

Figure 1 High-overview of Weblet architecture

Fa
ce

s
Se

rv
le

t 6. Render
Response

Lifecycle

W
eb

le
ts

Ph
as

eL
is

te
ne

r WebletContainer

getWebletURL()

getWebletRequest()

ViewHandler

WebletsViewHandler

getResourceURL()

Application Scope

/META-INF/weblets-config.xml

/WEB-INF/weblets-config.xml

1 2 3

45

JDJ.SYS-CON.com48 January 2006

<?xml version=”1.0” encoding=”UTF-8” ?>

<weblets-config xmlns=”http://weblets.dev.java.net/config” >

 <weblet>

 <weblet-name>org.myapp.html</weblet-name>

 <weblet-class>net.java.dev.weblets.packaged.PackagedWeblet</

 weblet-class>

 <weblet-version>1.0-SNAPSHOT</weblet-version>

 ...

 </weblet>

 ...

</weblets-config>

Security
 When serving packaged resources from a JAR, extra care must
be taken not to make Java class files or other sensitive information
accessible by URL. In desktop Java applications, resource files are
often stored in a sub-package called “resources” underneath the
Java implementation classes that use the resource files. The same
strategy is also appropriate for packaged resources in JavaServer
Faces component libraries, and has the security benefit of ensur-
ing that only the resource files are accessible by URL. All other
contents of the JAR file, including Java implementation classes,
are not URL accessible because no Java classes exist in either the
“resources” package or in any sub-package of “resources.”

Weblets Protocol
 Having covered how to configure Weblets, it’s time to look at
how we can reference resources defined by the Weblet in our
renderer. The syntax, defined by the Weblet contract, for return-
ing a proper URL to the JSF page is as follows:

<prefix><weblet name><resource>

 The prefix indicates that this is a Weblet-managed resource,
and this is followed by the Weblet name and the resource re-
quested.
 Previously, in our Renderer class, we passed the URL /myre-
sources/myScript.js as an argument to the ViewHandler’s getRe-
sourceURL() method. In the code sample below, we amend this
to use the Weblet protocol instead.

ViewHandler handler = context.getApplication().getViewHandler();

String resourceURL =

 handler.getResourceURL(context,

 “weblet://org.myapp.html/myScript.js”);

out.startElement(“script”, null);

out.writeAttribute(“type”, “text/javascript”, null);

out.writeAttribute(“src”, resourceURL, null);

out.endElement(“script”);

 The Weblet protocol-like syntax is convenient and easy to un-
derstand. The syntax starts with weblet://, followed by the Weblet
name, e.g., org.myapp.html, and finally the path info or resource
file, e.g., /myScript.js. Notice that neither the URL mapping nor the
version number are included in the Weblet resource syntax. The
Weblet URL mapping and version number are used by the Weblets-
ViewHandler to create a resource URL that the Weblet will service.
 When the component writer is not using Weblets, he would not
be using the weblet:// resource path syntax and would distribute
a separate installables zip. When the component writer moves to
Weblets, he would start using weblet:// resource path syntax in the
Renderer, and include the resources in the JAR. There is no benefit
to using a mixture of these approaches for resources in the same
version of the same component library.

Using Weblets in a JSF Application
 In order to simplify setup for the application developer,
component writers should select a default URL mapping for their
component libraries. There is no need for the application devel-
oper to add any Weblet-specific configuration to the web.xml file,
since the WebletsPhaseListener will be invoked automatically to
service incoming requests for Weblet-managed resources.

Summary
 As a new open source project, Weblets has tremendous possibili-
ties to provide a defacto generic and configurable resource loading
facility for Web clients and the JSF component community. The key
differentiators are simplified packaging of JSF components and
their resources, and a minimized overhead of installing and setting
up JSF component libraries for a particular Web application project.
 This article has explored a new way of packaging resources with
JSF components. You should now be able to leverage Weblets in
your own component library by including a suitable weblets-con-
fig.xml file and using the weblet:// protocol-style syntax to refer-
ence Weblet-managed resources.
 In our next article in this series of building “Rich Internet Com-
ponents with JavaServer Faces,” we are going to look at how we can
design JSF components using AJAX and Weblets.

Feature

Listing 1: Weblets configuration file, weblets-config.xml
<?xml version=”1.0” encoding=”UTF-8” ?>
<weblets-config xmlns=”http://weblets.dev.java.net/config” >
 <weblet>
 <weblet-name>org.myapp.html</weblet-name>
 <weblet-class>
 net.java.dev.weblets.packaged.PackagedWeblet
 </weblet-class>
 <init-param>
 <param-name>package</param-name>
 <param-value>
 org.myapp.faces.renderer.html.resources
 </param-value>
 </init-param>
 </weblet>

 <weblet-mapping>
 <weblet-name>org.myapp.html</weblet-name>
 <url-pattern>/myresources/*</url-pattern>
 </weblet-mapping>
</weblets-config>

Listing 2: Weblets configuration file using 1.0 versioning for production
<?xml version=”1.0” encoding=”UTF-8” ?>
<weblets-config xmlns=”http://weblets.dev.java.net/config” >
 <weblet>
 <weblet-name>org.myapp.html</weblet-name>
 <weblet-class>net.java.dev.weblets.packaged.PackagedWeblet</
 weblet-class>
 <weblet-version>1.0</weblet-version>
 <init-param>
 <param-name>package</param-name>
 <param-value>org.myapp.faces.renderer.html.resources</param-value>
 </init-param>
 </weblet>

 <weblet-mapping>
 <weblet-name>org.myapp.html</weblet-name>
 <url-pattern>/myapp/*</url-pattern>
 </weblet-mapping>
</weblets-config>

������������� ����������� ���� ���� ������������� ������
���
����� ����������� ���� ���� ������������� ����������� ����
��
��
��������� ����������� ���� ���� ������������� �����������
���
����������� ���� ���� ������������� ����������� ���� ����
������������� ����������� ���� ���� ������������� ������
���
����� ����������� ���� ���� ������������� ����������� ����
��
��
��������� ����������� ���� ���� ������������� �����������
���

�������������
���������������������������������
������������������

�������
���������������

������������������

��������

������������������

������������

COPYRIGHT ©2006 SYS-CON MEDIA ALL RIGHTS RESERVED NOTE: SPEAKER LINE-UP SUBJECT TO CHANGE WITHOUT NOTICE

������������
�������
��������������

�������������
���������������������
���������������������
������������

����������
����������������
���������

�����������������
�������
������������������������

����������������
������������������
���������������������

���������
������������������
�������������
����������������

����������������
������������������
������������������������

������������
����������������
������������������������
�����������������������
������

��������������

�����������������������������
�������������

���������������������
�����������2�3�������
������������������������

���������������������
����������������������������
�����������������������
��������������������������
���������������������������

���������������������
����������������������������
�����������������������
��������������������������
���������������������������

���
��������������������������

��� ������
���������������������������

��� �������
���

����������������

������������������������������

�������������

�����������

���

���

���

��

���

��

��

����������

�������������������

���
���
��

�������������������������������������

���
�������������������������������

JDJ.SYS-CON.com50 January 2006

ne way in which technology
is adopted is when an existing
process is automated and made
more efficient, cheaper, or reliable.

Another is when a technique or innovation
is applied to an existing process to drastically
alter the way it occurs. The disadvantage of
the latter is that it requires the idea being
sold to someone who has to change to adopt
it, and thereby carries a risk of failure. Ap-
plying a technology to merely streamline an
existing process is a simpler to adopt as the
implementation merely involves oiling an
existing solution.
 Given the keystone that communication
occupies in our lives, you would think that it
would be an exemplary case of technology
implementation. Ironically though this isn’t
what has occurred; instead it is one of the
most recalcitrant disciplines.
 An example is the telephone. When it was
first rolled out, it was used by secretaries to
read memos sent by company executives.
The secretaries would write down the mes-
sage and read it to the recipient’s secretary
who’d deliver and collect a reply before
phoning it back. It was a streamlining of the
previous process, which had involved the
message being carried to a telegraph agent
who would encode it in Morse and send it
as a telegram. We take it for granted now
that a phone message is a way of conduct-
ing a two-way conversation, but for the first
telephones it took a long while before the
message’s author and recipient would talk to
each other directly and cut out the additional
latency and inefficiency introduced by hav-
ing couriers in-between.
 While with smug hindsight we can mock
the early adoption of the telephone, I fear
that generations to come will do likewise
with our current usage of e-mail. It originates
from a scenario where mail would be used
to send memos within and letters between
organizations. Once computers were added
to the equation, instead of hand writing
memos and letters, people were using word
processors and sending printed output. With
networking, the obvious implementation
was to shortcut the process and simply send
the mail electronically to the recipient. What
has occurred though is a world where e-mail

has almost become the means and the end
itself. A colleague came by my desk a few
days ago to ask if I had received the e-mail
he had sent me, and then went back to his
cubicle to await my reply. Our corporate
phone system e-mails you when someone
leaves a phone message. In some situations
I have received e-mails from people asking
for a convenient time to telephone. Leaving
aside the politics, flame, and other idiosyn-
crasies that come to the fore with e-mail, it is
surely a poor implementation of technology
as a means to solving the general problem of
increasing communication effectiveness.

 There are other examples of where the
path of least resistance has been used, when
a technology rollout has been influenced
heavily by the legacy it replaces, rather than
the promise it offers. Numeric keypads are
a case in point, where telephones lay out
123 on the top row, and computers 123 on
the bottom. The computer arrangement
descends from calculators and adding
machines, so why is the telephone different
? It stems from an evolution that began with
rotary phones with dials. The dial is turned
clockwise to a fixed position and released,
clicking on its return to generate pulses
for each number; one for a 1, nine for a 9
and ten for a zero. The arrangement of the
number was such that one was at the top,
nine toward the bottom, and counter-clock-
wise next to it the zero. Nine and zero were
infrequently used in phone numbers so they
were the least easy to dial. When a nu-
meric keypad for a phone was required, the
engineers felt that, instead of just adopting
the calculator key layout, keeping 1 at the
top and 9 adjacent to 0 was easier for cur-

rent phone dial users to migrate to. It was a
decision based on following the path of least
resistance to the adoption of technology, yet
it has now created paradoxes such as the lay-
out of soft keys on a telephony application
being different from the physical layout of
the keys on the computer’s numeric keypad
or the layout on a calculator application. It
is a bizarre and seemingly insoluble legacy
that stems from the initial solution being too
closely aligned with the existing implemen-
tation rather than the new technology.
 Apart from being interesting, these
anecdotes provide lessons of failure where
the common thread is that a technology is
applied to an existing solution, rather than
to the existing problem. When IT was first
launched on corporations, buzzwords such
as “business process re-engineering” were
thrown about as jargon to embody the fact
that computers would change the way the
company worked, as well as merely improve
its existing transactions. Instead, however,
IT is now viewed as a cost center that has to
purchase copies of operating systems and
office applications, using whatever change
remains to play with business innovation. It’s
akin to asking the sales department to pay
a company’s electric bills and catering costs
before trying to generate new accounts, yet it
passes off every day in boardrooms where IT
managers have to fight daily for every dollar
of their budget.
 Whatever the future holds for IT, it has
to come by looking at an existing scenario,
and not merely attempting to tackle the old
solution with a newer and faster technology,
but peeling back the layers and working out
what the original root problem was of the
solution that’s currently in place. The Inter-
net has launched huge corporations that
adopted technology as their means of doing
point business rather than a bolt on, and
the future is boundless as new problems are
tackled with increasing bandwidth, mobility,
and content type. I just hope that for each
solution we aren’t stuck with upside-down
keyboards and implementations that hinder
rather than aid communication, and that we
all remember that the best solutions come
from analyzing problems, not patching
existing solutions.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

When Fixing Problems, Look Beyond
Merely Improving the Existing Solutions

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@
sys-con.com

O

 © 2005 WEB SERVICES EDGE. ALL RIGHTS RESERVED

��� ����������������23

�������������������������events.�����������

��

��

������������

������������������������events������������

� ������������������������������
� �������� �������������������������������
� � �������������������������
� � ��������������������
� � �����������������������

����������������������
��

���

�������������������������

���
���
���
��
���
��
��
��

�������������������

�������������������������

������������������������

�����������������������������������
������������������������
�������
���������������
�����������
���������������������������
���������������������
�������������������������
�������������������������
��������������������������
��

�������������������������
�������������������
������������������
����������
��������������������������
���������������������
����������������
����������������
�����������������������������
����������������������������

����������������������
����������������������
�����������
������������������
�����������������������
�����������������

���������
�������������������
����������������������������
������������������������������
����������������

������������������������

��
���
���
������������������������������

�������������������

JDJ.SYS-CON.com52 January 2006

his article aims to illustrate how loose coupling of a
Model in an MVC-based framework can be achieved
by describing a real example – developing a frame-
work for a Web-based XSD-XML generator, which
is part of the Event Web research at the Infospheres

Lab at Caltech. Why this is important is explained, along with
a description of the various techniques used to accomplish
the goal. Examples include: how a Model can be initiated in a
modular manner; how to add dynamic properties to a Model
without polluting the Model base classes; how to change
the Model without affecting its existing operations; how the
Model can be switched during runtime without affecting
interactions with other components; how all these can be
done if the Model is complex as in a DOM structure and is
generated dynamically. Design patterns are largely employed
to construct the framework; how the Eclipse XSD API should
be used is also illustrated.

Why Only Controller and View?
 When people discuss MVC they concentrate on View and
Controller, asking “How can the View be changed easily to
enhance user interface?” and “How can the Controller be eas-
ily changed to enhance the algorithm to handle user input?”
Apache Struts, a Java Web application framework, is a very suc-
cessful application of the MVC paradigm. Not surprising, Struts
is also mainly concerned with View and Controller. They are
linked fl exibly – new Controllers can be added by sub-classing
the Action class, and can be easily linked to Views as specifi ed
in a confi guration fi le. In the same way, new Views can be eas-
ily linked to the old Controller by changing the confi guration
fi le. ActionForms are available to facilitate communication
between the View and Controller.
 Struts is successful because its framework is suffi cient to
handle most Web application development. Changes always
take place in the Controller and View, e.g., the calculation of a
discount in an online store frequently changes; the appearance
of the Web application is often changed to enhance the user
experience.
 Why, then, would people ignore the Model? It’s because
the Model is typically static. For example, the customer and
price model remains the same in most online shopping ap-
plications. So tight coupling between the Model and other
components would normally not be a major problem during
redevelopment. It’s therefore reasonable for an MVC-based

framework to put less emphasis on the Model. However, this
isn’t true in some cases, as shown in the XSD-XML Web gen-
erator below.

Model Matters
 The XSD-XML Web generator here is part of the Event
Web, developed in the Caltech Infospheres Lab headed by
Professor K. Mani Chandy and Dr. Daniel M. Zimmerman.
For more details, please refer to www.infospheres.caltech.
edu. In this project, a Web portal is developed for users to
interact with the Event Web and part of its functionality is
to help users specify an XML fi le based on an XSD. In other
words, an XSD-XML Web generator is needed with the fl ow
chart shown below:

 Only a simplifi ed version of the generator is developed for
the prototype. However, redevelopment is needed when:
1. More XSD features are supported to describe complex

XML instances, e.g., annotations and attributes. The
parsing process then becomes more complicated.

2. The XSD uses features (such as group and choices) that
could generate XML instances with different structures.
This means the users can choose their own DOM struc-
ture and dynamic UI is needed.

3. The type definition becomes more complicated. For
example, the element content consists of an SQL state-
ment to describe the price range “(Price < 10 AND Price
>2) AND Price <> 5”. In this case, an interactive tool is
needed to help users specify the input and analysis on
user input is needed.

 Redevelopment– re-reading the code and modifying the
program while preserving some of the operations – isn’t
pleasant. The framework exists to help programmers
understand the program and know exactly what to change
to make an enhancement without affecting the entire pro-
gram. An MVC-based framework is a natural choice here
and the major components can be easily identifi ed as:
1. View – the input form
2. Model – the DOM structure generated by parsing the

XSD
3. Controller – the link between View and Model to analyze

user input and update the Model, responsible for for-
warding a new View to the user

by Man-ping Grace Chau

T

Flexible
 Model

Loose coupling of Models
in an MVC-based framework

Feature

Man-ping Grace Chau is

a student at the Chinese

University of Hong Kong,

majoring in information

engineering.

mpchau2@ie.cuhk.edu.hk

Flexible The

53January 2006JDJ.SYS-CON.com

 Loose coupling of the Model plays a crucial role in this
framework. The Model here is the DOM structure gener-
ated dynamically from the XSD fi le and redevelopment to
support more complex XSD would give rise to the follow-
ing design issues:
1. When more features of XSD are supported, the algo-

rithm for generating the forms/files has to be changed.
How can this be done without affecting the algorithm
that manipulates the Model?

2. New operations like analyzing user input may be
needed in complicated type definition. How can that be
added without making the Model aware of it?

 These two problems are related to how the Model is
coupled with the other parts of the framework. In addition,
our Model is generated dynamically by parsing an XSD.
In complex events where users are allowed to defi ne their
own DOM structures, how can the Model be changed and
presented by the Controller and View effi ciently, given that
the Model is not known until runtime?
 The complexity of the XSD specifi cation makes these
problems worse. Manual effort is needed to determine how
each XSD feature should be interpreted in making a form
and generating the XML. For example, element declara-
tion and type defi nition describes what the DOM structure
should be like, facets of simple types specify how error
checking should be done, and model groups specify the dif-
ferent forms of DOM structures that users can choose from.
For the sake of completing the background information be-
fore discussing the framework design, we will briefl y discuss
XSD parsing here, which is how the Model is initiated. A tree
structure shown in the following diagram is formed when the
example XSD is parsed using Eclipse XSD API.
 A common mistake is to assume that the tree structure
generated by parsing the XSD is exactly the DOM struc-
ture of the target XML fi le, which is clearly not the case
as shown. As mentioned, an XML instance specifi ed by a
XSD can have alternate DOM structures, so it doesn’t make
sense to expect that parsing the XSD will generate the cor-
responding DOM structure directly. Additional manipula-
tion is needed to create the DOM tree of the target XML
instance from the tree structure above. The corresponding
DOM structure is shown below.

Shaping the Framework
 One trivial way to structure the Model would be to build
a DOM tree directly when parsing the XSD fi le. But such an
approach has disadvantages:
1. DOM handling is both memory-hungry and computa-

tionally expensive, especially when users are allowed to
re-structure the tree.

2. Some information such as the type of text node and pos-
sible alternate DOM structures can’t be stored in DOM.
Additional data structures are needed.

3. The processes of creating the DOM tree and parsing
the XSD are tightly coupled, i.e., the process of parsing the
XSD isn’t made modular. When more XSD features have to
be supported, the entire process can be affected. So can
we fake a DOM tree to overcome these constraints?

 Let’s begin by building a family of Element objects that
contain properties specifying the tag names, type informa-
tion, etc. They go into ArrayLists and are linked together
like a DOM tree as shown below. The Elements are classi-
fi ed by their types as specifi ed in the XSD (e.g., simple type,
complex type, etc.).
 While building our DOM structure after the XSD is
parsed, Elements of different types know the different
forms of data they are looking for. For example, a built-in
type element only looks for the tag name and the built-in
type. A complex type element looks for the other elements
that make up the complex type as well as the model groups
that structure the nested elements. As a result, the parsing
process becomes modular – each Element knows how to
parse itself. When more advanced XSD features are needed,
like group referencing in elements of complex types, only
the parsing method of ComplexTypeElement has to be
changed. How the other elements are parsed isn’t affected.
This technique can also be used to build an abstract syntax
tree for a compiler or interpreter.
 What’s more, sub-classing can be done to support even
more complicated elements (e.g., elements referencing
substitution groups). Since they have the same interface for
providing information, adding more Elements in the Model
is transparent to the other components. For example, View
calls the same “getTag” method on the Elements without
knowing their concrete classes.
 But this doesn’t completely solve the problem of sup-
porting extra XSD features. For example, sub-classing the
Element won’t support simple type elements with different
facets, because ‘simple type with facet’ isn’t classifi ed as
another type, and sub-classing like this would lead to an
explosion of classes. Nor it is desirable to rewrite the entire
SimpleTypeElement class to specify how the facet should
be handled. In including attributes, the attributes should be
added to the individual Element object instead of the entire
class, since every Element doesn’t need attributes, but this
can only be determined at runtime when the XSD is parsed.
To address this, a Decorator pattern can be used to attach

 Loose coupling of the Model plays a crucial role in this
framework. The Model here is the DOM structure gener-
ated dynamically from the XSD fi le and redevelopment to
support more complex XSD would give rise to the follow-
ing design issues:
1. When more features of XSD are supported, the algo-

rithm for generating the forms/files has to be changed.
How can this be done without affecting the algorithm
that manipulates the Model?

2. New operations like analyzing user input may be
needed in complicated type definition. How can that be
added without making the Model aware of it?

 These two problems are related to how the Model is
coupled with the other parts of the framework. In addition,

Flexible
 Model

Figure 1 Action and ActionForm

Action

+execute(ActionMapping mapping,
ActionForm form,

ServletRequest request,
ServletResponce responce)

ActionForm

+get...()
+set...()

AnalyzeAction GenerateFileAction DrawFormAction AnalyzeActionForm GenerateFileActionForm DrawFormActionForm

Figure 2 Workflow

Redraw form

Start
Choose XSD file to

be parsed on

Generate input
form based on the

XSD

Get input from
users

Submit Analyze users’
input

Generate XML file Finish

JDJ.SYS-CON.com54 January 2006

additional responsibilities to an object dynamically without
polluting the Element class:
1. Information about these additional features is stored in

the Decorators.
2. The handling of these additional features (e.g., parsing)

can be delegated to the Decorators.

 A Decorator can even be composed with another Decora-
tor to enhance its functionality according to the Composite
pattern. For example, Attribute can own a Facet Decorator for
specifying the attribute type.
 To sum up, we have now described how our defined DOM
structure can support different features of XSD for generat-
ing the input form and the XML file – a family of Elements is
defined and different Decorators (additional features) con-
tribute to different aspects of the Element. For example, Facet
represents the validity of the node values. Of course it should
be noted that the Element should only be a data keeper, except
in the case of parsing, since only it knows how to initialize itself.
How it’s manipulated, (say represented in a form) is delegated
to other parts of the framework.

Consequences
1. How different types of Element are handled (e.g., parsed)

is made modular. Changing how one is manipulated
doesn’t affect another.

2. Adding Elements can be done easily by sub-classing
the Element base class and they share the same inter-
face to interact with the other parts of the framework.

3. Adding dynamic properties (e.g., attribute and facet)
to Elements can be done by sub-classing the Decora-
tor base class. They can be attached to the Elements
while parsing. This prevents an explosion of Element
sub-classes.

4. The handling of Decorators is made modular.
5. Decorators can enhance their functionalities dynami-

cally by composing with other Decorators.

Hierarchy of Visitors
 To support ‘simple’ XSD, only two operations are
performed on the Model – print the Model as a form and
generate a XML file based on the Model. A naïve imple-
mentation would let each Element implement a ‘print’
and ‘generate’ method to make it handle itself on request.
However, this has three disadvantages:
1. When additional methods are needed (e.g., an analysis

of user input), all Element classes have to be changed
to support the additional method, which can be
expensive.

2. Operations of the same nature (e.g., print form) are
scattered across different Elements, which makes them
hard to understand and manage.

3. The state generated by iterating through the Elements
should be accumulated. However this can’t be done
unless the state is passed as an extra argument or
stored as a global variable, which isn’t easy to manage.

 The Visitor pattern can be used to solve the problems.
Related operations are packaged in the same Visitor object
(e.g., PrintFormVisitor and GenerateFileVisitor). On re-
quest, the Element is asked to accept a Visitor to delegate
the job (e.g., print itself). The Element also passes itself as
the argument during the request, so the Visitor can carry
out its operation based on the type of the Element. For
visiting the built-in type element, the Visitor only asks for
the tag and type; but for visiting a complex type element,
the Visitor asks for the nested Elements that define the
complex type and the model group. Double dispatch is
possible here – the method invoked depends not only on
the object called, but also on the caller object.
 As a result, the Elements only act as data keepers in the
framework and the operations for manipulating them are
defined elsewhere – localized in Visitors, which are easier
to manage. State can also be accumulated in Visitors when
iterating through the Elements. This is how the different
parts of the framework interact with Model – by owning
these Visitors. For example, View owns PrintVisitor to draw
the input form and Controller owns ValidateVisitor to do
input validation.

Consequences
1. The addition of new operations for manipulating the

Elements can be done by sub-classing the Visitor base
class.

2. Similar operations on different Elements are localized in
the same Visitor class. The manipulation of each Element

Feature

 Figure 3 The schema returned

XSDElementDeclaration XSDElementDeclaration

XSDSimpleTypeDefinition XSDSimpleTypeDefinition

XSDEnumFacet

XSDEnumFacet XSDEnumFacet

Very Good

Good Acceptable

Decimal

Age Appearance

Appearance Type

XSDEnumFacet
Mint

XSDEnumFacet
Like New

XSDEnumFacet

XSDEnumFacet
Poor

Refurbished

XSDParticle

XSDParticle

XSDParticle XSDParticle

XSDParticle

XSDElementDeclaration

XSDElementDeclaration

XSDSimpleTypeDefinition XSDSimpleTypeDefinition

XSDSimpleTypeDefinition

Condition

ConditionType Decimal

XSDMinFacet
2 Delivery

String

XSDParticle

XSDElementDeclaration
Page

XSDSimpleTypeDefinition XSDSimpleTypeDefinition

ISBN

ISBNType

([0-9][3}-|)[0-9]-[0-9]{6}-[0-9]{2}-[0-9]

XSDParticle

XSDPatternFacet

XSDParticle

Publisher

String

XSDElementDeclarationXSDElementDeclaration

XSDComplexTypeDefinition

XSDParticle

XSDParticle

XSDParticle

XSDParticle

XSDParticle

XSDElementDeclaration

XSDElementDeclaration

XSDSimpleTypeDefinition

XSDSimpleTypeDefinition

XSDSimpleTypeDefinition

XSDModelGroup

XSDElementDeclaration
Price

Price Type

From

String

Location

String

XSDParticle

XSDParticle

XSDElementDeclaration

XSDElementDeclaration

BornDate

Date
XSDSimpleTypeDefinition

XSDSimpleTypeDefinition

Name

String

Schema

XSDElementDeclaration
Event EventType

XSDParticle

XSDModelGroup

XSDParticle XSDParticle

XSDParticle

XSDElementDeclaration XSDElementDeclaration
Shipping

XSDModelGroup

XSDComplexTypeDefinition

XSDComplexTypeDefinition

55January 2006JDJ.SYS-CON.com

is specified by Visit methods with signature of their own
types. Making changes to any of these has little to no
effect on the others.

3. Elements and Decorators act as data keepers without
providing any methods to handle themselves (except
parsing).

Making It Work
 To iterate through the self-defined DOM structure to
print a form or generate a file, we need recursive func-
tions. A simplified version of the recursive function that
generates a XML file in pseudo code is:

public boolean GenerateNode(Node node, Document doc, Element parent)

{

 boolean isError = false;

 Element e = doc.createElement(node.getTag());

 parent.appendChild(e);

 if (node.getNestedElement() != null)

 {

 foreach (node.getNestedElement() as children)

 {

 isError = GenerateNode(children, doc, e);

 if (isError)

 {

 return false; //return at once as

leaves have errors

 }

 }

 else

 {

 //this is a leaf node, some more arbitrary operations

 }

 isError = validate(node); //arbitrary method to check valid-

ity of this node

 return isError;

}

 So to make the Visitor iterate through the Model, the
Visit method must be recursive. This can be done by ask-
ing the children to accept the Visitor (itself) again and
pass in the necessary parameters.

isError = children.accept(this, doc, e);

// children would call visitor.visit(this, doc, e) to invoke recur-

sive call

Or this can be done by directly invoking the other visit method:

isError = this.visit(children, doc, e);

 However, these methods break the Visitor pattern:
1. The first method: The accept method becomes depen-

dent on the recursive operations – it has to conform
to the return type of the recursive Visit method and
includes the parameters needed for the recursive
function.

2. The first and second method: All the Visitors can now
have different signatures for the different recursive Visit
methods.

 Figure 4 The self-generated DOM tree

BornDate

Event

Book

Name

ISBN

Publisher

Shipping

From Location Delivery

Appearance

Age

Page

Condition

Price

 Figure 6 Elements and Decorators

Element
+getTag()
+getType()

+getSpecial()
+Parse()

BuiltInTypeElement SimpleTypeElement ComplexTypeElement
Facet Attribute

AttributeSimple AttributeGroup

+Parse()

Decorator

11 *

*0.

 Figure 5 Our defined DOM structure

C

CC

C

S

S S S

S
SSSS

Level 0

Level 1

Level 2

: complex type element

: simple type element

: Arraylist

 Figure 7 Visitor

v.visit(this) v.visit(this) v.visit(this)

BuiltinTypeElement

+Accept(Visitor v)

+Accept(Visitor v)

+Accept(Visitor v) +Accept(Visitor v)

SimpleTypeElement ComplexTypeElement

Element

View

Visitor

+visit(ComplexTypeElement e)
+visit(SimpleTypeElement e)
+visit(BuiltInTypeElement e)

PrintVisitor GenerateFileVisitor ValidateVisitor

JDJ.SYS-CON.com56 January 2006

 To solve the problem, objects can be defined for keep-
ing these parameters and return values in the Visitor.
These object structures should be defined as private inner
classes of the Visitor since they are solely used by the
recursive visit method and no other object ever accesses
them. How they are used is shown in Figure 8.
 As a result, both visit and accept methods are void
methods, don’t take parameters that are specific to
the recursive operations, and the Visitor pattern is
preserved.

Consequences
1. The Visit method under the Visitor pattern can be made

 recursive to handle complex data structures.

Strategic Decorator and Reflective Accept
 It’s the Elements’ responsibility to determine which
Decorator should be used to service requests for
different kinds of information. For example, when asked
for a type restriction, the Element should forward the
request to the Facet Decorator. It’s desirable that when
additional Decorators are added, the effort required to
determine how the Decorators should be used is kept to
a minimum and doesn’t necessitate big changes to the
Element class.
 It’s unavoidable that the parsing method of the Element
has to be changed whenever new Decorators are added
as when the Decorators are instantiated and attached
dynamically to the Elements. This should be the state that
determines how the Decorator is used.
 Is it possible to make this the only part that requires
changes when adding new Decorators? The answer is yes
– by making use of the Strategy pattern
 Let’s begin by looking at how an Element maintains its
set of Decorators.
 During parsing, the Element instantiates the Decora-
tors and puts them into different ArrayLists so that the
Decorators delivering the same kind of information are
grouped together. For example, different types of Facet
Decorators are saved in the ArrayList typeDecorators.
When the Elements are invoked by the Visitor to give
certain information. For example, type. All the Decorators
in the ArrayList typeDecorator are invoked to fulfill the
request. According to the Strategy pattern, Decorators all
share the same interface for providing the service, e.g.,
PrintInformation, so the client Element can make use of
the encapsulated algorithm without knowing which Deco-
rator it’s using. When more Decorators are attached, only
the parsing method of the Elements has to be changed to
put the Decorator into the right ArrayList to identify its
functionality. This technique can also be used in imple-
menting a compiler/interpreter to store the user-defined
type information. Instead of storing the Decorators in an
ArrayList, a HashMap can be used.
 This solution again scattered the operations of similar
type into different Decorators, which is undesirable. To
overcome this problem, the Visitor pattern can be applied
again. Instead of asking the Decorators to perform the
operations themselves like print information, they should
again delegate the job back to the Visitor and act only
as data keepers. A reference to the Visitor can be easily
obtained. The Visitor passes itself to the Element when
invoking data from Element (e.g., type information for
drawing the form for PrintVisitor), so the Element can
pass it to all Decorators in the ArrayList through the com-
mon accept method.
 This isn’t the end of the story. Some adjustments still
have to be made. In the traditional Visitor pattern, there
are multiple Visit methods with different signatures for all
Decorators, and changes to the Visitor base class are needed
whenever new Decorators are added. This may be feasible in
handling Elements, but definitely not for Decorators. Not all
Visitors need information from all Decorators. For example,
the Decorator for specifying the default value is useful to the
Visitor that prints the input form, but not to the Visitor that

Feature

 Figure 8 Recursive visit

PrintParameter para
PrintReturn ret

arg0 = para.getArg0();
...
para.set(arg0, arg1);
//recursive call
e.Accept(this);
result = ret.getResult();
...
ret.setResult(result);
return;

PrintVisitor

+Visit(ComplexTypeElement e)

PrintParameter
arg0
arg1

+getArg0()
+getArg1()

+set(int arg0, String arg1)

PrintReturn
result

+getResult()
+setResult(int result)

1

1

1

1

 Figure 9 Strategy with Visitor

SimpleTypeElement
ArrayList typeDecorator
ArrayList inputDecorator

+handleTypeDecorator(Visitor v)

foreach (decorator d in typeDecorator)
 d.Accept(v)

Decorator
+Accept (Visitor v)

FacetDecorator DefaultValueDecorator

 Figure 10 Visitor with reflection

�����������������
�����������������������
������������������������ �������������������

�������������������������������

���������

��������������������������������������
���������������� �������������� ���������������������

������������������
���

�����������������
���
���

���������������������

�������

���������������� ���������������
�����������������������������������
�������������������������������������

�����������������������������������

57January 2006JDJ.SYS-CON.com

validates input (assuming that users can’t change the default
value in the form).
 Reflection is how to make the Visitor pattern more flexible.
By using reflection, Decorators will be aware of the Visitor
sub-class type during accept so that they can invoke the spe-
cific methods of the Visitor sub-classes to handle themselves.
As a result, the Visitors no longer have to share the same
interface in handling the Decorators. When new Decorators
are added, only those specific Visitors that handle the new
Decorators have to be changed by adding a method that
indicates how the Decorator is handled.
 On the other hand, when more Visitors are added, not
all Decorator classes have to be modified. Their interfaces
to communicate with the Visitors, namely the ‘gateway’
accept method, remain unchanged. Only those Decorators
that are going to be manipulated by the new Visitor need
an additional method to accept the new Visitor, which is
invoked by refection in the ‘gateway’ accept method. As
a result, Decorators are aware of the Visitor that they are
sending requests to and know exactly which methods of
different Visitors have to be invoked to handle themselves.
The overall idea is presented in Figure 10.
 The Accept method of Decorators is shown below:

public boolean Accept(Visitor v)

{

 String methodName = v.getClass().getName();

 //method name starts from Accept and then the class name of visi-

tor

 methodName = “Accept”+ methodName.substring(methodName.lastIn-

dexOf(ʻ.ʼ)+1);

 try

 {

 Method m = getClass().getMethod(methodName, new Class[] {

v.getClass() });

 m.invoke(this, new Object[] {v});

 }

 catch (Exception e)

 {

 System.out.println(e.getMessage());

 return true;

 //indicate error

 }

 return false;

}

 This can be applied to other cases where both the Model
and the operations on the Model need constant changes.
What’s more, programmers would have an explicit under-
standing of how the Decorators are handled differently by
different Visitors. At the same time, the Decorators still act
only as data keepers, their manipulation is delegated to
Visitors, and operations of similar kinds can be localized in
the same Visitor.

JDJ.SYS-CON.com58 January 2006

Feature

 In summary, the following must be done when a new
Decorator is added:
1. Determine the type of information revealed by this

Decorator and set the properties
2. Implement the methods for handling this Decorator in

different Visitors
3. Let the Decorator invoke those methods of Visitor in the

specific Accept’visitor’ methods

Consequences
1. When adding a new Visitor, only those Decorators that

are going to be manipulated by the new Visitor have to
provide an accept method for that new Visitor.

2. When adding a new Decorator, only those Visitors that
are going to manipulate the Decorator have to provide a
method that’s meant to be invoked by the new Decorator
to handle themselves.

3. By using the Strategy pattern, the Element can forward
the requests to the appropriate Decorators without
acknowledging which Decorator it’s handling. When add-
ing new Decorators, only the parsing part of the Element
has to be changed.

Chain of Visitors
 While generating the XML file from the Model, it’s desir-
able to validate at the same time but walking through the
same Model twice would be expensive. However, these are
completely unrelated operations. How should they be com-
bined while maintaining their loose coupling? The answer
is by using the Chain of Responsibility pattern. In validating
while generating a file, the GenerateFileVisitor can make
the Element accept a ValidateVisitor during the generation
process. When there are errors, the GenerateFileVisitor will
continue to iterate through the remaining Elements to finish
the validation process without generating the file. As a result,
the ValidateVisitor can rely on the GenerateFileVIsitor to
iterate through the Elements and the algorithm to iterate the
same Model need not be written twice.
 The good thing about Chain of Responsibility is that
operations can be extended without affecting the previous
operations. For example, when an analysis of user input is
needed, the ValidateVisitor can make the Element accept an
AnalysisVisitor to change the user input to some other form
(e.g., an SQL statement) while generating the file, without
changing anything in the GenerateFileVisitor. Since all the
Visitors share the same interface, the Visitors can even be
switched while iterating through the Elements without mak-
ing the Elements aware of it.

 Consequences
1. Manipulation of the Elements is delegated to the

Visitors and the operations can be extended by making
the Elements accept nested Visitors without affecting
what the current Visitor is doing.

2. The Visitor can be switched
while iterating through the Elements without the
Elements being aware of it. State accumulation can be
maintained by passing self-defined data structure as
parameters.

Summary
 The MVC-based framework presented here emphasizes
the loose coupling of the Model with the other compo-
nents. This is important if the application often requires
the Model and the algorithm for handling the Model to be
updated. The following Design Patterns are employed to
achieve this goal:
1. Decorator – Adding dynamic properties to the Model

without polluting the Model classes.
2. Composite – Models can be composed from multiple

Models to enhance functionality.
3. Visitor with reflection – Operations on the Model

can be added without changing the Model base
class; changes in the Model don’t affect the Visitor
base class

4. Strategy – Other parts of the framework can interact
with the Model without being aware of the concrete
classes they’re dealing with.

5. Chain of Responsibility – The functionalities of opera-
tions on the Model can be extended without affecting
the previous operations.

 A way to implement recursive a visit method was also
introduced to help the Visitor iterate through complex
data structures.

Acknowledgments
 I would like to thank my mentors Professor K. Mani
Chandy, Dr. Daniel M. Zimmerman, and Mr. Jonathan Lurie
Carmona for their unfailing guidance and support. Thanks
to team members Mr. Weilin Shao, Mr. Mehran Shahir, and
Mr. Zachary Henson for interesting discussions. The Event
Web project is supported in part by the NSF Grant CCR-
0312778 named “Information Infrastructures for Crisis
Management.”

Resources
• Erich Gamma, Richard Helm, Ralph Johnson, John

Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional
Computing Series.

• K. Mani Chandy, Brian Emre Aydemir, Elliott Michael
Karpilovsky, and Daniel M. Zimmerman. Event Webs for
Crisis Management, IASTED International Conference on
Communications, Internet and Information Technology,
2003.

• Jeremy Blosser, Reflect on the Visitor Design Pattern,
http://www.cs.joensuu.fi/pages/ageenko/teaching/
OOD/DD.pdf Figure 11 Composite of Visitors

Visitor
+visit(ComplexTypeElement e)
+visit(SimpleTypeElement e)

AnalyzeVisitor
+visit(ComplexTypeElement e)
+visit(SimpleTypeElement e)

ValidateVisitor
+visit(ComplexTypeElement e)
+visit(SimpleTypeElement e)

GenerateFileVisitor
+visit(ComplexTypeElement e)
+visit(SimpleTypeElement e)

e.accept(validateVisitor);

0..*

1

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess
of the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject
to change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the
content of their advertisements printed in Java Developer’s Journal. Advertisements are to be printed at the
discretion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred
positions” described in the rate table. Cancellations and changes to advertisements must be made in writing
before the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

 AJAX Seminar www.ajaxseminar.com 201-802-3022 49

 Altova www.altova.com 978-816-1600 4, 19

 Arcturus Technologies www.arcturustech.com 703-822-4582 31

 Azul Systems www.azulsystems.com/developerfreedom 650-230-6691 29

 ceTe Software www.dynamicpdf.com 800-631-5006 43

 InterSystems www.intersystems.com/cache4p 617-621-0600 7

 IT Solutions Guide www.itsolutions.sys-con.com 888-303-5282 59

 Java Developer’s Journal www.jdj.sys-con.com 888-303-5282 45

 Jinfonet Software www.jinfonet.com/jp12 301-838-5560 37

 MapInfo www.mapinfo.com/sdk 800-268-3282 21

 Northwoods Software Corp. www.nwoods.com/go 800-434-9820 41

 Parasoft Corporation www.parasoft.com/jdjmagazine 888-305-0041 Cover I

 Perforce www.perforce.com 510-864-7400 Cover II

 Smart Data Processing, Inc. www.weekendwithexperts.com 732-598-4027 61

 Software FX www.softwarefx.com 800-392-4278 Cover III

 SYS-CON Events www2.sys-con.com/events 201-802-3023 51

 SYS-CON Newsletters www.sys-con.com 888-303-5282 57

 Synaptris www.intelliview.com 866-99IVIEW 17

 WebAppCabaret www.ngasi.com/jdj.jsp 866-256-7973 23

 Windward Studios, Inc. www.windwardreports.com 303-499-2544 9

 Xenos www.xenos.com/VAN 888-242-0695 35

 Xythos Software, Inc. www.xythos.com 888-4XYTHOS 13

JDJ.SYS-CON.com60 January 2006

–continued from page 3

4. 2006 will be the year of acceptance of
the importance of roles in the world of
identity management and provision-
ing. Bridgestream is the leader in role
management integrating with the lead-
ers in identity management, directory
services, and provisioning.

5. The two trends that will not be new for
2006 but that will continue their growth
are Software as a Service (SaaS) or on-
demand software and open source,
which continues to find acceptance in
the enterprise.

 Our next set of predictions comes
from Jim Milbery, CTO for Chicago
Growth Partners in Chicago with 30-plus
companies under his wing (.NET, Java,
ColdFusion, Python – “you name it,”
as he says). He also acts as the “virtual
CTO” for a number of companies in his
portfolio.

JIM MILBERY
SANs, AJAX, Web 2.0,
Blog consolidation, InfoSec

1. Data storage: The proliferation of
blogs and the raw size of XML docu-
ments (and everything is XML these
days) are going to drive us to a new
emphasis on storage (SANs in par-
ticular).

2. AJAX everywhere: IE gets new life out
of the proliferation of AJAX. More
high-profile sites are going to adopt
AJAX as a means of extending the
life of the browser in the near term.
We may even see the return of some
application-development tools
around AJAX (something more than
just component libraries).

3. Dashboard apps: Even with the pro-
liferation of AJAX we are going to see
a serious rise in client-specific apps
that are based on Web 2.0 technolo-
gies – think iTunes.

4. Blogging acid-reflux: The massive
interest in blogging continues to rise,
but reliance and confidence in indi-
vidual blogs sags; high-profile blogs
that are industry-specific begin to
dominate and provide a bit of “edit-
ing” to the process.

5. William Strunk Jr. rolls over in his
grave: The illustrious author of The
Elements of Style officially rolls over
in his grave. I thought that basic writ-

ing skills were bad as seen in e-mail
documents, but blogging takes things
to a whole new level of poor grammar
and punctuation.

6. Information security: We start to get
serious about protecting applications
during the coding process, not just as
an afterthought.

 Next up is Alan Williamson, technol-
ogy evangelist for SpikeSource and
distinguished former editor-in-chief of
JDJ, as well as chief architect of Blue-
Dragon.

ALAN WILLIAMSON
Java, BitTorrent, Googlecrash,
Adobe, IE

 Here are my modest predictions for
2006:
1. Java has been in the dark for the

past few years; its time to come back
around again is here. Sun has some
interesting initiatives in the pipeline.

2. The movie industry will wake up to
BitTorrent (and the likes) and actually
figure out a way to utilize this revolu-
tion instead of trying to close it down.
You can’t push back the tide. The BBC
is going to be launching BBC2 as the
first broadband television channel in
2006.

3. Google shares fall or even crash.
Everything that goes up has to come
down and, contrary to popular belief,
they aren’t the biggest player on the
Internet and people will start distrust-
ing them as Microsoft and Yahoo!
crank up their offerings.

4. In fear of Microsoft Vista (and AJAX),
Adobe will offer all Flash development
tools for free, which will result in a
major surge in adoption.

5. IE7 will probably more than likely
eclipse Firefox again.

 J.P. Morgenthal, managing partner
for the IT consultancy Avorcor and the
author of Enterprise Information Integra-
tion: A Pragmatic Approach, is as usual
very forthright in his foresight.

J.P. MORGENTHAL
VPMNs, AJAX, VoIP Phones,
SaaS, Semantic Technologies

1. Private mail networks: With people
getting slammed I believe we will see
the rise of VPMN (Virtual Private Mail

Networks). Essentially, these are analo-
gous to VPNs, allowing private network
traffic to run over the public backbone.
They use common SMTP protocols to
deliver mail, but unless you have per-
mission to send mail to the recipient the
mail will be rejected.

2. AJAX: We will see the rise of even stron-
ger support for more powerful portable
client-based applications based on Web
protocols.

3. Composite applications: With the rise of
SOA and BPM, it’s going to get even eas-
ier to develop applications that require
less low-level coding skills and that are
more flexible and can respond faster to
changes in business.

4. VoIP phones: Advancements and growth
in high bandwidth wireless networking
means that wireless devices will be IP
addressable, which means that the next
wave of phones will leverage the public
Internet for phone communications
and common WAN/LAN. Windows CE
and Palm devices will be able to provide
voice services. Gone are the days of buy-
ing a phone dedicated to a single net-
work provider.

5. Self-publishing: Garth Brooks and Wal-
Mart, LuLu, MusikMafia. These names
all represent a rise in successful self-pub-
lishing. Books, magazines, and music are
all media that are being self-published
over the Internet. Soon, this will be
expanding to software as Software as a
Service (SaaS) becomes more popular.

6. Metadata: Metadata is finally being rec-
ognized as a critical enterprise asset. It’s
now being managed properly and lever-
aged for its properties for automation.

7. Semantic technologies: People and orga-
nizations are finally starting to see the
value in being able to describe data in
context and defining the relationships
between data. Semantic technologies
enhance and extend the basic power
realized by relational database technolo-
gies to data anywhere in the world.

 JDJ’s enterprise editor, Yakov Fain, has
10 predictions, several of them directly
involving Java.

YAKOV FAIN
Java 5.1, AJAX, “CSMB,”
Outsourcing, Yahoo!

1. Enterprises will finally start using Java
5. The sooner the 5.1 version is released
the better.

From the Group Publisher

61January 2006JDJ.SYS-CON.com

2. AJAX hype will calm down. AJAX is an interesting technology and
will become one of many techniques used in Web application
development. Nothing more.

3. Fat clients will be more widely used in distributed enterprise
applications. Java still has a chance to be used in this area, if
someone will create an IDE with an easy-to-use and powerful
Swing GUI designer. JDeveloper and NetBeans are leading here.
Adobe (formerly Macromedia) tools will become more and more
popular.

4. Smart development managers will start creating mixed open
source/commercial environments. For example, you can use
open source J2EE servers in Dev and QA and their commercial
counterparts in Prod and Contingency environments. The
same is applicable to DBMS, messaging, et al. Some open
source vendors are already moving in this direction by creating
products that are 100% compatible with particular commercial
tools.

5. A new software architecture for small and mid-size businesses
should arise. IMHO a good candidate is what I call “Client/Server
Message Bus” (CSMB): a set of client/server applications can talk
to each other using open source messaging and an enterprise ser-
vice bus. Note: Client/server applications can have more than two
tiers, e.g., RMI client, RMI Server and DBMS.

6. Programming will become the trade of the younger generation.
Middle-age programmers will be leaving the coding arena and
moving to business analysis and management. You can’t beat a
25-year-old Indian programmer who’s ready to join any project
tomorrow (in any place on Earth), sharing a room in so-called
guest apartment. The code quality of such a programmer may not
be as good as was expected by the employer, but this will be a little
secret for some time, and smart kids will have enough time to
learn how to program on the job.

7. A number of CIOs will come out of the closet and publicly admit
that the real cost of outsourced projects is high, because for
every two young Indian programmers, you need a local business
analyst who will write super-detailed functional specifications
and validate their work. But outsourcing is here to stay (at least in
the U.S.) and not because overseas programmers charge less, but
because just finding local programmers will become a difficult
task.

8. Yahoo! will come up with some new innovative Web products that
will be able to compete with Google’s software. If not Yahoo!, who
else?

9. By the end of the year the broadband Internet will give DSL and
cable Internet a run for its money. The wireless companies just
need to cut the prices of their broadband service, and the masses
will start leaving their “traditional” ISPs.

10. Java use will steadily increase despite the fact that various
replacements are being offered. Java is more than an excellent
object-oriented language enriched by tons of productivity librar-
ies (networking, multi-threading, security, etc.). It’s a mature and
proven platform for development of all kinds of applications for
all kinds of hardware. Java in programming plays the same role as
English in the real world: no one says that the Italian language will
replace English any time soon; on the other hand, songs in Italian
sound great.

 Erik C. Thauvin, as befits the author of Erik’s Linkblog and owner
of Thauvin.net, ranged far and wide in his predictions. They started
with combative opinions on RoR and Web 2.0.

ERIK C. THAUVIN
RoR, Web2.0, Open Source Java, IE 7, Google, Yahoo!, spam,
VoIP, and WiFi

1. Ruby (on Rails) and such will still be touted as taking over
Java, but in reality will be as insignificant as they are today.

2. Web 2.0 will solidify its status as a powerful buzzword. A lot
of fluff, very little stuff.

3. Sun will once again dangle the open source carrot as Mustang
gets closer to its release date.

4. The IE 7 rate of adoption will be phenomenal, especially
 compared to Firefox.
5. Sixty percent of Google’s services will still be in “beta.”
6. Yahoo! will be the first Internet portal to come up with a com-

pelling set of mobile-based services.
7. No spam salvation. Many will try, all will fail.
8. VoIP and Wi-Fi will become even more synonymous.

 So, let’s have your own contributions:
e-mail them please to 2006predictions@sys-con.com.

Acknowledgments
 Parts of this article were informed by discussions with
SYS-CON editors, writers and columnists, including Sean
Rhody, Israel Hilerio, Bill Ray, Mark Hinkle, Rob Gonda, and
Dion Hinchliffe.

JDJ.SYS-CON.com62 January 2006

005 may be remembered as the
year of eating cake. I had the
amusing honor of singing “Happy
Birthday” and eat cake in Sao

Paolo, Ede, San Francisco, Tokyo, and a
couple more places as many Java groups
and organizations around the world
wanted to be part of the 10th year of Java
technology. Together we journeyed from
being amazed at a dancing Duke in a
Web page to the full-frame, full-speed 3D
graphics in today’s computer games, all
with the same technology. Just this year
many achievements and events took place
that deserve a mention, and I’d like to
share my thoughts with you of what can
be behind some this and what they may
mean for the year ahead.
 Let’s start with the JCP Membership,
which continued to increase. This year,
as in previous years, the community
increased by about 12–15%. Perhaps not
too surprising. What pleased me is that the
Java Community has become more inclu-
sive of industries and geographies around
the world, as illustrated by SouJava’s
joining from Brasil (the world’s largest JUG
and the first JUG to join), Tata Elxsi from
India (worldwide provider of customized
design solutions), and ChinaMobile from
China (the first mobile service provider
from that country to join).
 An effort I lead at Sun in support of
the goals of the JCP is Sun’s TCK Scholar-
ship Program. Established in 2002, the
scholarship helps ensure that the cost of
the rigorous compatibility testing process
is not a barrier for not-for-profit organiza-
tions, universities, or qualified individual
developers who want to build compatible
implementations of JSRs led by Sun. Since
this scholarship was established, quite a
number of projects have benefited from
it. In August, Sun extended the program
for another three years. At http://java.sun.
com/scholarship/ you’ll find a list of schol-
arship recipients and the set of qualifica-
tions applicants are required to meet. You
can send questions and applications to the
Review Board at tck-review-board@sun.
com. One scholarship application I would
not at all be surprised to receive in the new

year would be one from Project Harmony
by the Apache Software Foundation for the
Java SE 5 technology test suite.
 Speaking of open source software, 2005
saw a further proliferation of this meth-
odology and lifestyle. Apache’s Harmony
project is an example. Sun played its
own part by moving its implementations
of Java EE 5 and JSR 208, Java Business
Integration, under the CDDL license. At
java.net you can directly participate in the
development of the next versions of the
Java SE and Java EE platforms. While the
Java SE 5 and Java SE 6 projects (aka JDK
Community) haven’t progressed that far
using an open source software license,

they show that not only did open source
software as a licensing model continue
its march in 2005, but that the lifestyle it
represents – the desire for openness and
transparency – also continued its march.
This will clearly carry forward in 2006.
Within the JCP all this plays too. Com-
pared with a few years ago, participants
in the community and observers from the
side will now expect (and often demand)
that the specification development
process itself also be more visible, more
tangible, and have higher interactivity. The
JCP took strides toward this trend when in
JCP 2.6 it made basic rule changes to make
all spec reviews public and to make an
Expert Group’s work transparent through
observers and other means. My team, the
JCP Program Office, will be focusing on
two things the coming year that speaks to

this. We will encourage and entice Spec
Leads and Expert Groups to be as trans-
parent, open, participative, and inclusive
as they have the courage to be. And we
will be rolling out substantive changes to
the JCP.org site, providing broad sets of
tools to Spec Leads and Expert Groups so
that they can easily develop specifications
collaboratively and interactively with the
community at large.
 Spec Leads have one of the hardest jobs
in the Java community: to bring together a
group of developers, from differing walks
of life and with often competing goals,
to develop high-quality Java technol-
ogy specifications that will enjoy wide
adoption, and do all that on predictable
and reasonable schedules. Compared
with the first three years of the JCP, JSRs
now complete 100–120 days faster on
average. To recognize the hard work and
expertise (both technically and often also
psychological…) of these developers, the
JCP started the Star Spec Lead program in
2005. We will continue this in the new year.
The goal of this program is not just to give
these individuals well-deserved attention
but also to enable the transference of their
expertise to fellow Spec Leads and com-
munity participants in order to continue
to raise the knowledge-level and perfor-
mance of the Community.
 This year saw the return of the first Java
technology to enter the Java Community
Process. The real-time specification for
Java was the effort that started the JCP in
December 1998. Now, this group of indus-
try experts have started JSR 282 to develop
the next version of this technology, which
should complete during the course of
2006. You should be able to look forward
to many great JSRs to finish in 2006: Java
EE 5 (JSR 244), Java SE 6 (JSR 270), Mobile
Architecture for CLDC (JSR 248), Mobile
Architecture for CDC (JSR 249), and MID-
P v3 (JSR 271), among many others.
 Stay tuned to jcp.org for more cool JCP
program activities and opportunities to
participate actively in Java technology
standards innovation. If you’re not a JCP
member already, consider becoming one
as one of your New Year’s resolutions!

JSR Watch

Onno Kluyt
Looking Back, Looking Ahead

2

Onno Kluyt is

director of the

JCP Program at

Sun Microsystems

and Chair of the JCP.

onno@jcp.org

